Richard Blum

SamsTeach Yourself

Arduino

Programming

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

fF 9 B @ ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337123
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337123
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337123
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337123
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337123/Free-Sample-Chapter

Richard Blum

SamsTeachYourself

Arduino

Programming

oure

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Arduino™ Programming in 24 Hours
Copyright © 2015 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33712-3
ISBN-10: 0-672-337126

Library of Congress Control Number: 2013955616
Printed in the United States of America

First Printing: September 2014

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Arduino is a registered trademark of Arduino and its partners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Greg Wiegand

Executive Editor
Rick Kughen
Development
Editor

Keith Cline

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Cheryl Lenser

Proofreader
Sarah Kearns

Technical Editor
Jason Foster

Publishing
Coordinator

Kristen Watterson

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction. ... 1

Part I: The Arduino Programming Environment

HOUR 1

Part II: The

2
3
4

Introduction to the Arduino.......................... 7
Creating an Arduino Programming Environment............................. 23
Using the Arduino IDE ... 39
Creating an Arduino Program ... 57

C Programming Language

HOUR 5 Learning the Basics of C...................... 75
6 Structured Commands...................... 89

7 Programming Loops................... 103

8 Working with Strings ... 119

9 Implementing Data Structures.......................... 133

10 Creating Functions....................... 147

11 Pointing to Data.................... 163

12 Storing Data.............ooo 181

13 Using Libraries ... 201

Part IlI: Arduino Applications

HOUR

14
15
16
17
18
19
20
21
22
23
24

Working with Digital Interfaces 219
Interfacing with Analog Devices ... 235
Adding Interrupts ... 251
Communicating with Devices.......................... 267
USING SENSOTS ... 287
Working with Motors ... 303
Using an LCD ... 319
Working with the Ethernet Shield... 337
Advanced Network Programming 355
Handling Files ... 373
Prototyping Projects ... 387

Table of Contents

Introduction 1
HOUR 1: Introduction to the Arduino 7
What Is an Arduino?. 7
Introducing the Arduino Family. 0. 11
Exploring Arduino Shields. 18
Summary 20
Workshop. 20
HOUR 2: Creating an Arduino Programming Environment. 23
Exploring Microcontroller Internals 23
Moving Beyond Machine Code. 27
Creating Arduino Programs. oL 29
Installing the Arduino IDE. 32
Summary. 37
Workshop. 38
HOUR 3: Using the Arduino IDE 39
Overview of the IDE 39
Walking Through the Menus. 40
Exploring the Toolbar 49
Exploring the Message Area and Console Window. 49
Setting Up the Arduino IDE 51
Using the Serial Monitor 52
Summary 54
Workshop. 54
HOUR 4: Creating an Arduino Program 57
Building an Arduino Sketch. 57
Creating Your First Sketcho oo 59
Interfacing with Electronic Circuits. 64
Summary. 70

Contents

HOUR 5: Learning the Basicsof C. 75
Working with Variables. o0 75
Using Operators 80
Exploring Arduino Functions oL 83
Summary 87
Workshop. 87

HOUR 6: Structured Commands 89
Working with the if Statement 89
Grouping Multiple Statements 90
Using else Statements 92
Using else if Statements 93
Understanding Comparison Conditions 95
Creating Compound Conditions. 97
Negating a Condition Check 98
Expanding with the switch Statement. 98
Summary. 99
Workshop. 100

HOUR 7: Programming Loops 103
Understanding Loops. 103
Using while Loops 104
Using do-while Loops 106
Using for Loops. 107
Using Arrays in Your Loops 109
Using Multiple Variables o 112
Nesting Loops. 112
Controlling Loops 113
SUmMmary 116
Workshop. 116

HOUR 8: Working with Strings. 119
What's a String? 119
Understanding C-Style Strings 120
Introducing the Arduino String Object 126
Manipulating String Objects 0L 130
Summary. . .. 131

vi Sams Teach Yourself Arduino Programming in 24 Hours

HOUR 9: Implementing Data Structures. 133
What's a Data Structure?. 133
Creating Data Structures 134
Using Data Structures 136
Manipulating Data Structures 138
Arrays of Structures. 140
Working with Unions 142
Summary. 145
Workshop. 145

HOUR 10: Creating Functions 147
Basic Function Use 147
Returning a Value.o 150
Passing Values to Functions. 0o 152
Handling Variables in Functions 154
Calling Functions Recursively. 158
Summary 160
Workshop. 160

HOUR 11: Pointingto Data 163
What Is a Pointer? 163
Working with Pointers. oo 166
Using Special Types of Pointers. 167
Pointer Arithmetic. 168
Strings and Pointers 171
Combining Pointers and Structures. L. 173
Using Pointers with Functions 176
Summary. ... 179
Workshop. 179

HOUR 12: Storing Data. 181
Arduino Memory Refresher 000 181
Taking a Closer Look at SRAM.., 183
Creating Dynamic Variables 185
Using Flash to Store Data., 189
Using the EEPROM Memory 194
Summary. ... 198

Contents vii

HOUR 13: Using Libraries 201
What Is a Library? 201
Using the Standard Libraries 0. 203
Using Contributed Libraries 206
Creating Your Own Libraries 208
SuUmMmQary 214
Workshop. 215

HOUR 14: Working with Digital Interfaces 219
Digital Overview. 219
Using Digital Outputs 221
Experimenting with Digital Output 223
Working with Digital Inputs 0o 226
Experimenting with Digital Input. 0. 229
Summary 231
Workshop. 232

HOUR 15: Interfacing with Analog Devices. 235
Analog Overview 235
Working with Analog Input. 238
Modifying the Input Result 241
Using Input Mapping 242
Changing the Reference Voltage. 245
Analog Output. 246
Using the Analog Output. 246
Summary 248
Workshop. 248

HOUR 16: Adding Interrupts 251
What Are Interrupts?. 251
Types of Interrupts 252
Using External Interrupts. 254
Testing External Interrupts. 255
Using Pin Change Interrupts 260
Working with Timer Interrupts. 262
Ignoring Interrupts 264
Summary. ... 265

viii Sams Teach Yourself Arduino Programming in 24 Hours
HOUR 17: Communicating with Devices. 267
Serial Communication Protocols. 267
Using the Serial Port 268
Working with the SPI Port 274
Working with 12C .. 277
SuUmMmQary 284
Workshop. 284
HOUR 18: Using Sensors. 287
Interfacing with Analog Sensors. L. 287
Working with Voltage 288
Using a Voltage-Based Sensor. 293
Working with Resistance Output 295
Using a Resistance-Based Sensor. 296
Using Touch Sensors 297
Working with Touch Sensors, 298
Summary 300
Workshop. 301
HOUR 19: Working with Motors. 303
Typesof Motors 303
Using DC Motors. 305
Experimenting with Motorso 308
Using Servo Motors 313
Summary 317
Workshop. 317
HOUR 20: Usingan LCD 319
What Isan LCD? 319
Interfacing with LCD Devices. 321
The LiquidCrystal Library 325
The LCD Shield. 329
Summary 335
Workshop. 335
HOUR 21: Working with the Ethernet Shield. 337
Connecting the Arduino to a Network 337

The Ethernet Shield Library 340

Contents ix

Writing a Network Program. 349
Summary 351
Workshop. 352
HOUR 22: Advanced Network Programming. 355
The Web Protocol 355
Reading Sensor Data from a Web Server. 361
Controlling an Arduino fromtheWeb 364
SUmMmQary 370
Workshop. 370
HOUR 23: Handling Files. 373
What Is an SD Card Reader? 373
SD Cards and the Arduino. 375
The SD Library 376
Interfacing with the SD Card 378
Storing Sensor Data. 382
SUmMmQary 385
Workshop. 385
HOUR 24: Prototyping Projects 387
Determining Project Requirements 387
Determining Interface Requirements. 389
Listing Components 391
Creating a Schematic 392
Creating the Breadboard Circuit. 393
Designing the Sketch. 394
Writing the Sketch 395
Testing the Sketch. 398
Creating a Prototype Board 399
Summary. ... 401
Workshop. 401

About the Author

Richard Blum has worked in the IT industry for more than 25 years as a network and
systems administrator, managing Microsoft, UNIX, Linux, and Novell servers for a network
with more than 3,500 users. He has developed and teaches programming and Linux courses
via the Internet to colleges and universities worldwide. Rich has a master’s degree in man-
agement information systems from Purdue University and is the author of several program-
ming books, including Teach Yourself Python Programming for the Raspberry Pi in 24 Hours
(coauthored with Christine Bresnahan, 2013, Sams Publishing), Linux Command Line and
Shell Scripting Bible (coauthored with Christine Bresnahan, 2011, Wiley), Professional Linux
Programming (coauthored with Jon Masters, 2007, Wiley), and Professional Assembly Language
(2005, Wrox). When he’s not busy being a computer nerd, Rich enjoys spending time with
his wife, Barbara, and two daughters, Katie Jane and Jessica.

Dedication

To my Uncle George.

Thanks for all your mentoring and troubleshooting help in my early
electronics projects. I never would have gotten started in my career
had those projects not worked!

“Iron sharpens iron, and one man sharpens another.” —Proverbs 27:17 (ESV)

Acknowledgments

First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things
possible and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sams Publishing for their outstanding
work on this project. Thanks to Rick Kughen, the executive editor, for offering us the oppor-
tunity to work on this book and keeping things on track, and to Andrew Beaster for all his
production work. I would also like to thank Carole Jelen at Waterside Productions, Inc., for
arranging this opportunity and for helping out in my writing career.

I am indebted to the technical editor, Jason Foster, who put in many long hours double-
checking all the work and keeping the book technically accurate, all while getting a new
job, having a new baby (congrats!), and moving to a new house in another state. His sug-
gestions and eagle eyes have made this a much better book.

Finally I'd like to thank my wife, Barbara, and two daughters, Katie Jane and Jessica, for
their patience and support while I was writing this.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of
this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

Since being introduced in 2005 as a student project, the Arduino microcontroller has quickly
become a favorite of both hobbyists and professionals. It’s a popular platform for creating many
different types of automated systems—from monitoring water levels in house plants to control-
ling high-level robotic systems. These days you can find an Arduino behind lots of different elec-

tronic systems.

To control the Arduino, you need to know the Arduino programming language. The Arduino
programming language derives from the C programming language, with some added features
unique to the Arduino environment. However, beginners sometimes find the C programming

somewhat tricky to navigate.

Programming the Arduino

The goal of this book is to help guide both hobbyists and students through using the Arduino
programming language on an Arduino system. You don’t need any programming experience to
benefit from this book; I walk through all the necessary steps to get your Arduino programs up
and running.

» Part I, “The Arduino Programming Environment,” starts things out by walking through
the core Arduino system and demonstrating the process of creating an Arduino program
(called a sketch):

Hour 1, “Introduction to the Arduino,” shows the different Arduino models currently
available and describes how each differs.

Hour 2, “Creating an Arduino Programming Environment,” shows how to load the
Arduino IDE on a workstation and how to connect your Arduino to your workstation
to get your sketches running on your Arduino.

Hour 3, “Using the Arduino IDE,” walks through all the features available to you in
the IDE.

Introduction

Hour 4, “Creating an Arduino Program,” demonstrates the steps to build an Arduino
circuit, design a sketch to control the circuit, and upload the sketch to the Arduino to
run the circuit.

» Part II, “The C Programming Language,” takes an in-depth look at the features of the C
programming language that you need to know to write your Arduino sketches:

Hour 5, “Learning the Basics of C,” shows you how to use variables and math opera-
tors in C to manage data and implement formulas in your Arduino sketches.

Hour 6, “Structured Commands,” shows how to add logic to your sketches.

Hour 7, “Programming Loops,” demonstrates the different ways the Arduino language
allows you to iterate through data, minimizing the amount of code you need to write.

Hour 8, “Working with Strings,” introduces the concept of storing and working with
text values in your Arduino sketches.

Hour 9, “Implementing Data Structures,” walks through more complicated ways of
handling data in sketches.

Hour 10, “Creating Functions,” provides useful tips to help minimize the amount of
repeating code in your sketches.

Hour 11, “Pointing to Data,” introduces the complex topic of using pointers in the C
language and shows how you can leverage their use in your sketches.

Hour 12, “Storing Data,” walks you through how to use the EEPROM storage available
in the Arduino to store data between sketch runs.

Hour 13, “Using Libraries,” finishes the in-depth C language discussion by showing
how to use prebuilt libraries in your sketches and how to create your own.

» Part III, “Arduino Applications,” walks through the details for using your Arduino in differ-
ent application environments:

Hour 14, “Working with Digital Interfaces,” shows how to read digital sensor values
and use those values in your sketch and how to output digital values.

Hour 15, “Interfacing with Analog Devices,” shows how to read analog sensor values
and how to use pulse width modulation to emulate an analog output voltage.

Hour 16, “Adding Interrupts,” demonstrates how to use asynchronous programming
techniques in your Arduino sketches while monitoring sensors.

Hour 17, “Communicating with Devices,” covers the different communications proto-
cols built in to the Arduino, including SPI and I2C.

Conventions Used in This Book 3

Hour 18, “Using Sensors,” takes a closer look at the different types of analog and digi-
tal sensors the Arduino supports and how to handle them in your sketches.

Hour 19, “Working with Motors,” walks through how to control different types of
motors from your Arduino sketch.

Hour 20, “Using an LCD,” provides instructions on how to utilize digital displays to
output data from your sketch.

Hour 21, “Working with the Ethernet Shield,” discusses how to connect your Arduino
to a network.

Hour 22, “Implementing Advanced Ethernet Programs,” demonstrates how to provide
sensor data to remote network clients and how to control the Arduino from a remote
client.

Hour 23, “Handling Files,” shows how to use SD card interfaces found on some
Arduino shields to store data for long term.

Hour 24, “Prototyping Projects,” walks you through the process of creating a complete
Arduino project, from design to implementation.

Who Should Read This Book?

This book is aimed at readers interested in getting the most out of their Arduino system by writ-
ing their own Arduino sketches, including these three groups:

» Students interested in an inexpensive way to learn electronics and programming
» Hobbyists interested in monitoring and controlling digital or analog circuits

» Professionals looking for an inexpensive platform to use for application deployment

If you are reading this book, you are not necessarily new to programming, but you may be new
to the Arduino environment and need a quick reference guide.

Conventions Used in This Book

To make your life easier, this book includes various features and conventions that help you get
the most out of this book and out of your Arduino:

Steps—Throughout the book, I've broken many coding tasks into easy-to-follow step-by-
step procedures.

Things you type—Whenever I suggest that you type something, what you type appears in
a bold font.

4 Introduction

Filenames, folder names, and code—These things appear in a monospace font.
Commands—Commands and their syntax use bold.

Menu commands—I use the following style for all application menu commands: Menu,
Command, where Menu is the name of the menu you pull down and Command is the name
of the command you select. Here’s an example: File, Open. This means you select the File
menu and then select the Open command.

This book also uses the following boxes to draw your attention to important or interesting
information:

BY THE WAY

By the Way boxes present asides that give you more information about the current topic. These tid-
bits provide extra insights that offer better understanding of the task.

DID YOU KNOW?

Did You Know? boxes call your attention to suggestions, solutions, or shortcuts that are often hid-
den, undocumented, or just extra useful.

WATCH OUT!

Watch Out! boxes provide cautions or warnings about actions or mistakes that bring about data loss
or other serious consequences.

This page intentionally left blank

HOUR 4

Creating an Arduino Program

What You’ll Learn in This Hour:

» Building an Arduino sketch
» Compiling and running a sketch
» Interfacing your Arduino to electronic circuits

Now that you've seen what the Arduino is and how to program it using the Arduino IDE, it’s
time to write your first program and watch it work. In this hour, you learn how to use the
Arduino IDE software package to create, compile, and upload an Arduino program. You then
learn how to interface your Arduino with external electronic circuits to complete your Arduino
projects.

Building an Arduino Sketch

Once you have your Arduino development environment set up, you're ready to start working on
projects. This section covers the basics that you need to know to start writing your sketches and
getting them to run on your Arduino.

Examining the Arduino Program Components

When you use the Arduino IDE package, your sketches must follow a specific coding format.
This coding format differs a bit from what you see in a standard C language program.

In a standard C language program, there’s always a function named main that defines the code
that starts the program. When the CPU starts to run the program, it begins with the code in the
main function.

In contrast, Arduino sketches don’t have a main function in the code. The Arduino bootloader
program that’s preloaded onto the Arduino functions as the sketch’s main function. The Arduino
starts the bootloader, and the bootloader program starts to run the code in your sketch.

58 Creating an Arduino Program

The bootloader program specifically looks for two separate functions in the sketch:
> setup

> loop

The Arduino bootloader calls the setup function as the first thing when the Arduino unit powers
up. The code you place in the setup function in your sketch only runs one time; then the boot-
loader moves on to the 1oop function code.

The setup function definition uses the standard C language format for defining functions:

void setup() {
code lines

}

Just place the code you need to run at startup time inside the setup function code block.

After the bootloader calls the setup function, it calls the 1oop function repeatedly, until you
power down the Arduino unit. The 1oop function uses the same format as the setup function:

void loop () {
code lines

}

The meat of your application code will be in the loop function section. This is where you place
code to read sensors and send output signals to the outputs based on events detected by the sen-
sors. The setup function is a great place to initialize input and output pins so that they’re ready
when the loop runs, then the 1oop function is where you use them.

Including Libraries

Depending on how advanced your Arduino program is, you may or may not need to use other
functions found in external library files. If you do need to use external libraries, you first need to
define them at the start of your Arduino program, using the #include directive:

#include <library>

The #include directives will be the first lines in your sketch, before any other code.

If you're using a standard Arduino shield, most likely the shield library code is already included
in the Arduino IDE package. Just choose Sketch > Import Library from the menu bar, and then
select the shield that you're using. The Arduino IDE automatically adds the #include directives
required to write code for the requested shield. For example, if you select the Ethernet shield, the
following lines are imported into the sketch:

Creating Your First Sketch 59

#include <Dhcp.h>

#include <Dns.h>

#include <Ethernet.h>
#include <EthernetClient.h>
#include <EthernetServer.h>
#include <EthernetUdp.h>
#include <util.h>

That saves a lot of time from having to go hunting around to find the libraries required for a
specific shield.

Creating Your First Sketch

Now that you've seen the basics for creating an Arduino program, let’s dive in and create a
simple sketch to get a feel for how things work.

Working with the Editor

When you open the Arduino IDE, the editor window starts a new sketch. The name of the new
sketch appears in the tab at the top of the editor window areaq, in the following format:

sketch mmmddx
where mmm is a three-letter abbreviation of the month, dd is the two-digit numerical date, and x
is a letter to make the sketch name unique for the day (for example, sketch_janO1la).

As you type your sketch code into the editor window, the editor will color-code different parts
of the sketch code, such as making function names brown and text strings blue. This makes it
easier to pick out syntax errors, and comes in handy when you're trying to debug your sketch.

Now you're ready to start coding. Listing 4.1 shows the code for the sketch0401 file that we’ll use
to test things out. Enter this code into the Arduino IDE editor window.

LISTING 4.1 The sketch0401 Code

int counter = 0;

int pin = 13;

void setup() {
Serial.begin(9600) ;
pinMode (pin, OUTPUT) ;
digitalWrite (pin, LOW) ;

}

void loop ()

counter = counter + 1;

60 Creating an Arduino Program

digitalWrite (pin, HIGH) ;

Serial.print ("Blink #"); Serial.println(counter);
delay (1000) ;

digitalWrite (pin, LOW) ;

delay (1000) ;

You'll learn what all these different lines of code mean as you go through the rest of the hours,
so don’t worry too much about the code for now. The main point now is to have a sketch to
practice compiling and running.

The basic idea for this code is to make the Arduino blink the L LED connected to digital port 13
on the Arduino once per second, and also output a message to the Arduino serial port, counting
each blink.

After you enter the code into the editor window, choose File > Save As from the menu bar to save
the sketch as sketch0401. Now you're ready to verify and compile the sketch.

Compiling the Sketch

The next step in the process is to compile the sketch code into the machine language code that
the Arduino runs.

Click the verify icon on the toolbar (the checkmark icon), or choose Sketch > Verify/Compile
from the menu bar. Figure 4.1 shows the results that you should get if things worked correctly.

As shown in Figure 4.1, you should see a message in the message area that the compile has
completed, and the console window should show the final size of the compiled machine lan-
guage code that will be uploaded to the Arduino.

If you have any typos in the sketch code that cause the compile process to fail, you'll see an error
message in the message area, as shown in Figure 4.2.

The Arduino IDE also highlights the line of code that generated the error, making it easier for
you to pick out the problem. Also, a more detailed error message appears in the console window
area to help even more.

After you get the sketch to compile without any errors, the next step is to upload it to your
Arduino.

sketch0401 | Arduino 1.0.5

File Edit Sketch Tools Help

sketchD401 &

int counter = -
int pin = 13;

void setup () {
Serial.begin(9600);
pinMode (pin, OUTPUT):
digitalWrite({pin, LOW);
}

void loop() {
counter = counter + 1;
digitalWrite(pin, HIGH);
Serial.print("Blink #7);:
Serial.printin{counter);
delay(1000);
digitalWrite(pin, LOW);
delay(1000);

sketch0401 | Arduino 1.0.5

File Edit Sketch Tools Help

skelchD401 &

int counter = 0; =
int pin = 13;

woid setup() {
Serial.begin(9600)
pinMode {pin, OUTPUT) ;
digitalWrite(pin, LOW);

void loop() {
counters = counters + 1;
digitaliirite (pin, HIGH) ; 1
Serial.print("Blink #7); I

Serial.println(counter): |

delay(1000);
digitalWrite(pin, LOW):
delay(1000) ;

‘count

Creating Your First Sketch

FIGURE 4.1
Compiling the sketch0401 code.

FIGURE 4.2
A compiler error displayed in the Arduino IDE.

61

62 HOUR 4: Creating an Arduino Program

Uploading Your Sketch

The key to successfully uploading sketches to your Arduino unit is in defining how the Arduino is
connected to your workstation. Hour 3, “Using the Arduino IDE,” walked through how to use the
Tools > Serial Port menu bar option to set which serial port your Arduino is connected to. After
you set that, you should be able to easily upload your compiled sketches.

Just click either the upload icon on the toolbar (the right arrow icon), or select File > Upload from
the menu bar. Before the upload starts, the Arduino IDE recompiles the sketch code. This comes
in handy when you're just making quick changes; you can compile and upload the new code
with just one click.

When the upload starts, you should see the TX and RX LEDs on the Arduino blink, indicating
that the data transfer is in progress. When the upload completes, you should see a message in
both the Arduino IDE message area and console window indicating that the upload was com-
pleted. If anything does go wrong, you’ll see an error message appear in both the message area
and the console window, as shown in Figure 4.3.

- N
sketch0401 | Arduino 10.5 [E=EE

File Edit Sketch Tools Help

sketch0401 §

int counter = 0; =
int pin = 13;

woid setup{) {
Serial.hegin{9600) ;
pinfode (pin, OUTFUT);
digitallirite(pin, LOW);
}

woid loop() {
counter = counter + 1;
digitalWrite (pin, HIGH):
Serial.print("Blink #"); fl
Serial.println(counter);
delay({l000);
digitalWrite(pin, LOW);
delay(l000);

‘not found. Did yo the right one from the

FIGURE 4.3
Upload problem message in the Arduino IDE.

Creating Your First Sketch 63

If all goes well, you're ready to start running your sketch on the Arduino. The next section shows
you how.

Running Your Program

Now that the sketch code is uploaded onto your Arduino, you're ready to start running it.
However, you might have noticed that once the upload process finished in the Arduino IDE, the
L and the TX LEDs on your Arduino unit already started to blink. That’s your sketch running.
When the upload process completes, the bootloader automatically reboots the Arduino and runs
your program code.

The L LED is blinking because of the digitalWrite () function setting the digital pin 13 first
to O (no voltage) and then after a second, setting it to 1 (producing a 5V signal). The TX LED is
blinking because the Serial.print () function is sending data out the serial port.

You can view the output from the serial port on your Arduino using the serial monitor built in to
the Arduino IDE. Just choose Tools > Serial Monitor from the menu bar, or click the serial moni-
tor icon (the magnifying glass icon) on the toolbar. The serial monitor window appears and dis-
plays the output received from the Arduino, as shown in Figure 4.4.

COM5 = 1=

Blink #1
Blink #2
Blink #3
Blink #4
Blink #35

Autoscrol Newline v | |9800baud o

FIGURE 4.4
Viewing the Arduino serial port output from the serial monitor.

64 Creating an Arduino Program

You might have noticed that after you started the serial monitor, the blink count output
restarted back at 1. When you start serial monitor, it sends a signal to the Arduino to reset it,
which in turn runs the bootloader to reload the sketch and start over from the beginning.

You can also manually restart a running sketch using the Reset button on the Arduino. On the
Arduino Uno R3, you'll find the Reset button in the upper-left corner of the circuit board. Just
push the button and release it to reset the Arduino.

You don’t have to connect the Arduino to the USB port on your workstation for it to run. You can
run the Arduino from an external power source, as well, such as a battery pack or AC/DC con-
verter. Just plug the power source into the power socket on the Arduino unit. The Arduino Uno
R3 automatically detects power applied to either the USB port or the power port and starts the
bootloader program to start your sketch.

Interfacing with Electronic Circuits

While getting your sketch uploaded to the Arduino and running is a significant accomplish-
ment, most likely you’ll want to do more in your Arduino projects than just watch the L LED
blink. That’s where you’ll need to incorporate some type of external electronic circuits into your
projects. This section covers the basics of what you need to know to add external electronic cir-
cuits to your Arduino sketches.

Using the Header Sockets

The main use of the Arduino is to control external electronic circuits using the input and output
signals. To do that, you need to interface your electronic circuits with the Arduino analog and
digital signals. This is where the header sockets come into play.

If you remember from Hour 1, “Introduction to the Arduino,” the header sockets are the two
rows of sockets at the top and bottom of the Arduino Uno circuit board. (Some more advanced
Arduino units, such as the Arduino Mega, also include a third header socket on the right side of
the board to support additional ports.) You’'ll plug your electronic circuits into the sockets to gain
access to the Arduino input and output signals, as well as the power from the Arduino.

The basic Arduino Uno unit that we’re using for our experiments uses the standard Arduino two-
row header socket format. Figure 4.5 shows the layout of the upper and lower header sockets.

Interfacing with Electronic Circuits 65

FIGURE 4.5
The Arduino Uno upper and lower header sockets.

The lower header socket has 13 ports on it, as described in Table 4.1.

TABLE 4.1 The Arduino Uno Lower Header Socket Ports

Label Description

IOREF Provides the reference voltage used by the microcontroller if not 5V.

RESET Resets the Arduino when set to LOW.

3.3V Provides a reduced 3.3V for powering low-voltage external circuits.

5V Provides the standard 5V for powering external circuits.

GND Provides the ground connection for external circuits.

GND A second ground connection for external circuits.

Vin An external circuit can supply 5V to this pin to power the Arduino, instead of using the

USB or power jacks.
AO The first analog input interface.

Al The second analog input interface.

66 Creating an Arduino Program

Label Description

A2 The third analog input interface.

A3 The fourth analog input interface.

A4 The fifth analog input interface, also used as the SDA pin for TWI communications.
A5 The sixth analog input interface, also used as the SCL pin for TWI communications.

The upper header socket has 16 ports on it, as described in Table 4.2

TABLE 4.2 The Arduino Uno Upper Header Socket Ports

Label Description
AREF Alternative reference voltage used by the analog inputs (by default, 5V).
GND The Arduino ground signal.
13 Digital port 13, and the SCK pin for SPI communication.
12 Digital port 12, and the MISO pin for SPI communication.
-11 Digital port 11, a PWM output port, and the MOSI pin for SPI communications.
-10 Digital port 10, a PWM output port, and the SS pin for SPI communication.
-9 Digital port 9, and a PWM output port.
8 Digital port 8.
Digital port 7.
-6 Digital port 6, and a PWM output port.
-5 Digital port 5, and a PWM output port.
4 Digital port 4.
-3 Digital port 3, and a PWM output port.
2 Digital port 2.
T™X>1 Digital port 1, and the serial interface transmit port.
RX <-0 Digital port O, and the serial interface receive port.

For our test sketch, we need to access the digital port 13 socket, in addition to a GND socket, to
complete the electrical connection to power our electronic devices.

To access the sockets, you can plug wires directly into the socket ports. To make it easier, you can
use jumper wires, which you can easily remove when you finish experimenting.

Interfacing with Electronic Circuits 67

Building with Breadboards

When you build an electronic circuit, the layout is usually based on a schematic diagram that
shows how the components should be connected. The schematic shows a visual representation
of which components are connected to which, using standard symbols to represent the different
components, such as resistors, capacitors, transistors, switches, relays, sensors, and motors.

Your job is to build the electronic circuit to mimic the layout and connections shown in the sche-
matic diagram. In a permanent electronic circuit, you use a printed circuit board (called PCB) to
connect the components according to the schematic.

In a PCB, connections between the electronic components are etched into the PCB using a metal-
lic conductor. To place the electronic components onto the PCB, you must solder the leads of the
components onto the PCB.

The downside to using a PCB for your electronic project is that because it’s intended to be perma-
nent, you can’t easily make changes. Although that’s fine for final circuits, when you're develop-
ing a new system and experimenting with different circuit layouts, it's somewhat impractical to
build a new PCB layout for each test.

This is where breadboards come in handy. A breadboard provides an electronic playground
for you to connect and reconnect electronic components as you need. Figure 4.6 shows a basic
breadboard layout.

FIGURE 4.6
A basic breadboard.

68 Creating an Arduino Program

Breadboards come in many different sizes and layouts, but most breadboards have these
features:

> A long series of sockets interconnected along the ends of the breadboard. These are called
buses (or sometimes rails), and are often used for the power and ground voltages. The
sockets in the bus are all interconnected to provide easy access to power in the circuit.

» A short series of sockets (often around five) interconnected, and positioned across a gap in
the center of the breadboard. Each group of sockets is interconnected to provide an electri-
cal connection to the components plugged into the same socket group. The gap allows you
to plug integrated circuit chips into the breadboard and have access to the chip leads.

The breadboard allows you to connect and reconnect your circuits as many times as you need
to experiment with your projects. Once you get your circuit working the way you want, you can
transfer the breadboard layout onto a PCB for a more permanent solution.

Adding a Circuit to Your Project

Now that you've seen how to add external electronic circuits to your Arduino project, let’s create
a simple circuit to add to our Arduino sketch. Instead of using the L LED on your Arduino, let’s
use an external LED.

For this project, you need the following parts:
» A standard breadboard (any size)
» A standard LED (any color)
» A 10000hm resistor (color code brown, black, red)

» Jumper wires to connect the breadboard circuit to the Arduino

The circuit uses a 1000ohm resistor to limit the voltage that flows through the LED to help pro-
tect the LED. The LED doesn’t need the full 5V provided by the Arduino output, so by placing a
resistor in series with the LED, the resistor helps absorb some of the voltage, leaving less for the
LED. If you don't have a 1000ohm resistor handy, you can use any other resistor value to help
lessen the voltage applied to the LED.

Figure 4.7 shows connecting the resistor and LED to the GND and digital pin 13 ports on your
Arduino Uno unit.

Just follow these steps to create your electronic circuit for the project.

Interfacing with Electronic Circuits 69

mmmss smmes o
masE s

FIGURE 4.7
Circuit diagram for the sample project.

TRY IT YOURSELF V¥

Creating the Electronic Circuit

1. Connect a jumper wire from one of the GND socket ports on the Arduino to a socket row on
the breadboard.

2. Connect a jumper wire from the digital pin 13 socket port on the Arduino to another socket
row on the breadboard (not the same as the one you used for the GND signal).

3. Plug the LED into the breadboard so that the longer lead of the LED is connected to the
same socket row as the digital pin 13 wire and so that the other lead is plugged into a
separate socket row on the breadboard.

CAUTION

Polarity in Electronic Circuits

While plugging the LED in the wrong way won’t harm the LED, there are other electronic components
that can cause damage if plugged in the wrong way (such as transistors). Be careful when working
with electronic components that have polarity requirements!

70 Creating an Arduino Program

n 4. Plug the resistor so that one lead connects to the same socket row as the short lead of
the LED and so that the other lead connects to the socket row that carries the Arduino
GND signal.

Now you should be ready to test things out. Power up the Arduino, either by connecting it to
the USB port of your workstation or by connecting it to an external power source. Because the
Arduino maintains the sketch in flash memory, you don’t need to reload your sketch; it should
start running automatically.

CAUTION

Providing Power to the Arduino

Be careful when plugging and unplugging your Arduino if you're using a USB hub with other devices.
Stray voltages can result that may damage the other USB devices on the hub. It's always a good
idea to power down your USB hub when plugging and unplugging the Arduino.

If things are working, you should see the LED on the breadboard blink once per second. If not,
double-check your wiring to ensure that you have everything plugged together correctly on the
breadboard and that the wires are plugged into the proper socket ports on the Arduino.

TIP

Using the Serial Monitor

If you connected the Arduino to the USB port on your workstation, you can still use the serial moni-
tor in the Arduino IDE to view the output from the sketch. However, if you use an external power
source to power the Arduino, you won'’t be able to view that output unless you connect an external
serial device to the Arduino serial ports, which are digital ports O and 1 in the header sockets.

Summary

This hour walked you through your first Arduino project. First, we entered the sketch code into
the Arduino IDE editor window, then we compiled the sketch, and finally, we uploaded the com-
piled sketch to the Arduino. You also saw how to use the serial monitor feature in the Arduino
IDE to monitor output from your sketch. After that, you learned how to set up an external elec-
tronic circuit and interface it with your Arduino.

In the next hour, we take a closer look at the actual Arduino sketch code that we’ll be using in
our projects. You'll learn how the Arduino programming language stores and manipulates data
within our sketches.

Workshop 71

Workshop

Quiz
1. Which function must your Arduino sketch define to run the main part of your program code?
A. setup
B. loop
C. main

D. start

2. The Arduino IDE editor uses the same text color code to indicate functions as it does regu-
lar text in the code. True or false?

3. How do you interface external electronic circuits to your Arduino?

Answers

1. B. The loop function contains the sketch code that continually runs while the Arduino unit
is powered on. This is where you need to place your main sketch code.

2. False. The Arduino IDE uses brown to indicate functions used in the sketch code, and uses
blue to indicate text strings contained in the sketch code.

3. The Arduino header sockets are designed to easily interface external electronic circuits with
the analog and digital input and output pins on the microcontroller.

Q&A

Q. Is there a limit to the size of the sketches | can upload to my Arduino?

A. Yes, the size of the sketch is limited by the amount of flash memory present on your
Arduino. The Arduino Uno R3 has 32KB of flash memory. When you compile your sketch,
the Arduino IDE console window will display the size of the compiled sketch code and how
much space is remaining in the flash memory.

Q. Can | damage my Arduino by plugging in the wrong wires to the wrong header socket ports?

A. Yes, it's possible, but the Arduino does contain some basic protections. The Arduino is
designed with some basic voltage protection on each of the input and output ports. If you
supply too large of voltages to the ports, however, you can risk burning out the microcon-
troller chip. Use caution when connecting wires to the Arduino header sockets, and always
double-check your work before turning on the power.

Q. Is there an easy way to identify resistor values when working with electronic circuits?

A. Yes, all resistor manufacturers use a standard resistor color code. The resistor value and
tolerance are indicated by color bands around the resistor. To find the value of a resistor,
refer to a resistor color-code chart, as shown in the Wikipedia article on electronic color
codes (http://en.wikipedia.org/wiki/Electronic_color_code).

http://en.wikipedia.org/wiki/Electronic_color_code

This page intentionally left blank

Symbols

& (ampersand) reference
operator, 164, 170
* (asterisk) dereference
operator, 164
retrieving data, 166-167
storing data, 167
-> operator, retrieving data
structure values with pointers,
174-176
; (semicolon), terminating
statements, 77

Numbers

-3 header socket port, 66
-5 header socket port, 66
-6 header socket port, 66
-9 header socket port, 66
-10 header socket port, 66
-11 header socket port, 66
2 header socket port, 66
3.3V header socket port, 65
4 header socket port, 66
5V header socket port, 65
7 header socket port, 66
8 header socket port, 66
12 header socket port, 66
13 header socket port, 66

A

AO header socket port, 65
A1l header socket port, 65
A2 header socket port, 65

A3 header socket port, 65
A4 header socket port, 65
A5 header socket port, 65
abs() function, 85
accessing header sockets, 66
accessories, 17-18
activating serial monitor, 53
Adafruit Data Logging shield, 376
ADC (analog-to-digital converter),
25, 236
Add File option (Sketch menu), 46
addition operator, 80
advanced math functions, 85
alphanumeric LCD devices,
319-320
ALU (Arithmetic Logic Unit), 24
ampersand (&) reference
operator, 164, 170
analog interfaces
input signals
detecting, 236
limiting values, 241
mapping values, 242-245,
292
potentiometer example
sketch, 238-241
reference voltage changes,
245-246
layouts, 237-238
output signals, generating,
236-237, 246-247
planning, 389-390
analog output, 26
analog sensors, 287-288
resistance-based sensors,
295-297
temperature LCD display
example sketch, 327-329,
333-335

Index

temperature logging example
sketch, 382-384
temperature monitor example
project
analog interfaces, 389-390
breadboard circuits,
393-394
components needed,
391-392
digital interfaces, 390-391
planning, 388-389
planning sketches,
394-395
schematics, 392
testing sketches, 398-399
writing sketches, 395-398
temperature sensors for web
servers, 361-364
touch sensors, 297-300
voltage-based sensors,
288-293
converting voltage values,
292-293
sensitivity of, 291-292
temperature detection
example sketch,
293-295
voltage levels, 288-291

analogRead() function, 238, 291
analogReference() function,

245-246, 291

analog-to-digital converter

(ADC), 25, 236

analogWrite() function, 246, 307
AND operator, 80, 97
architecture of Arduino, 9-11
Archive Sketch option (Tools
menu), 47

404 Arduino

Arduino
accessories, 17-18
analog interfaces. See analog
interfaces
architecture, 9-11
communication between units,
280-284
controlling from web browser,
364-370
defined, 7
digital interfaces. See digital
interfaces
history of, 11-12
interrupts
external interrupts,
252-253, 254-260
ignoring, 264-265
pin change interrupts,
253-254, 260-262
polling versus, 251-252
timer interrupts, 254,
262-264
memory
comparison among types,
181-182
creating dynamic variables,
185-189
EEPROM memory, 194-197
flash memory, 189-193
SRAM memory, 183-185
as microcontroller, 7-8
models. See models of
Arduino
powering on/off with USB
hub, 69
shields. See shields
trademark protection, 9
Arduino IDE, 31-32
console window, 49-50
downloading, 32-33
Edit menu commands, 44-46
editor window, 59-60
File menu commands, 40-43
Help menu commands, 48
installing
for Linux, 37
for OS X, 36-37
for Windows, 33-36

interface, 39-40
libraries, 201
compiling functions, 205
components of, 202
contributed libraries,
206-208
documentation, 205
example usage, 205-206,
212-214
including, 204
installing, 212
location, 202-203
referencing functions in,
204-205
standard libraries, list of,
203-204
troubleshooting, 213
zip file creation, 211-212
message area, 49-50
serial monitor, 52-54
setup, 51-52
shield libraries, 32
Sketch menu commands, 46
toolbar, 49
Tools menu commands, 46-48
Arduino programming language.
See also C programming
language
functions, 83-86
advanced math functions,
85
bit manipulation functions,
86
calling, 148-150
defining, 148
global variables, 155-156
local variables, 156-158
passing values to,
152-154
random number
generators, 86
recursive functions,
158-160
returning values, 150-152
scope of variables, 154
Serial class, 83-84
time functions, 84-85

troubleshooting, 148
user-defined, 147
strings, 126-129
creating and manipulating,
126-128
manipulating, 130-131
String object methods,
128-129
Arduino Starter Kit, 18
AREF header socket port, 66
arguments, 152
Arithmetic Logic Unit (ALU), 24
arrays
creating, 110-111
of data structures, 140-142
defined, 120
loops, 109-112
pointer arithmetic, 168-171
sizing, 111-112, 121-122
strings, 120-126
comparing, 125-126
creating, 121-122
functions for, 122-125
ASCII format, 119, 271
assembly language, 27-28
assigning values
to data structures, 136-138
to variables, 77
assignment statements
equality comparison
versus, 96
equations versus, 82
asterisk (*) dereference
operator, 164
retrieving data, 166-167
storing data, 167
ATmega AVR microcontrollers,
9-10
components of, 23-26
CPU, 24-25
EEPROM memory, 194-197
flash memory, 189-193
1/0 interface, 25-26
memory, 25
memory comparisons,
181-182
SRAM memory, 183-185
instruction set, downloading,
27

Atmel C library, 29-30
Atmel Studio package, 30
attach() function, 313
attached() function, 313
attachinterrupt() function,
254-255
Auto Format option (Tools
menu), 47
autoscroll() function, 325
Autoscroll option (serial
monitor), 53
available() function
Serial library, 270
Wire library, 278
available method
EthernetClient class, 343
EthernetServer class, 345
EthernetUDP class, 347
File class, 377
AVR Libc project, 29
avr-gcc package, 30

baud rate, 271
Baud Rate option (serial
monitor), 54
begin() function
LiquidCrystal library, 325
Serial library, 83, 270-271
SPI library, 276
Wire library, 278
begin method
Ethernet class, 340
EthernetServer class, 345
EthernetUDP class, 347
SD class, 376
beginPacket method, 347
beginTransmission() function, 278
beta software, 33
binary calculations, 81
bit() function, 86
bit manipulation functions, 86
bitClear() function, 86
bitRead() function, 86
bitSet() function, 86

bitwise AND operator, 80
bitwise OR operator, 80
bitWrite() function, 86
blink() function, 325
blinking LED example sketch,
272-274, 280-284
Board option (Tools menu), 47
Boolean comparisons, 96-97
boolean data type, 77
Boolean logic, 81
bootloader, 42
functions in, 57-58
uploading, 48
breadboards, 17
creating circuits, 393-394
electronic circuit interfaces,
67-68
break statements, 99, 113-114
browsers, controlling Arduino
from, 364-370
brushes in DC motors, 304
buffer overflow, 184
building
libraries
code file creation,
208-210
example usage, 212-214
header file creation,
210-211
installing, 212
zip file creation, 211-212
web servers, 361-364,
366-370
Burn Bootloader option (Tools
menu), 48
byte data type, 77

C

C programming language, 28-29.

See also Arduino programming
language
Arduino IDE, 31-32. See also
Arduino IDE
Atmel C library, 29-30

C programming language 405

data structures, 133-134
arrays of, 140-142
assigning values, 136-138
copying, 138-140
creating, 134-136
initializing, 176

loops, 103-104
arrays, 109-112
break statements,

113114
continue statements,
114-116
do-while statements,
106-107
endless loops, 106
multiple variables in, 112
nesting, 112-113
for statements, 107-109
while statements, 104-106
operators
compound operators, 82
math operators, 80-82
order of operations, 82

pointers, 163-166

arithmetic with arrays,
168-171

data structures and,
173-176

null pointers, 167-168

passing to functions,
176-178

printing, 166

referencing strings,
172173

retrieving data, 166-167

storing data, 167

string manipulation,
171172

void pointers, 168

shield libraries, 32

statements, terminating, 77

strings, 120-126
comparing, 125-126
creating, 121-122
functions for, 122-125

How can we make this index more useful? Email us at indexes@samspublishing.com

406 C programming language

structured commands
comparisons, 95-97
compound conditions, 97
else if statements, 93-95
else statements, 92-93
grouping multiple
statements, 90-92
if statements, 89-90
negating condition checks,
98
switch statements, 98-99
unions, 142-145
variables
assigning values, 77
data types, 77-78
declaring, 76-77
dynamic variables,
185-189
qualifiers, 79
scope, 80
C++ programming language,
library creation
code files, creating, 208-210
header files, creating,
210-211
calculating factorials, 158-160
calling functions, 148-150,
158-160. See also referencing
calloc() function, 186-187
camel case, 77
CapacitiveSensor library, 298-300
capacitors, 297-298
capacity classes (SD cards), 374
case statements, 99
CHANGE external interrupt
mode, 255
changing
dynamic variables, 187
reference voltages, 245-246,
290-291
char data type, 77, 79, 119-120
character arrays. See arrays,
strings
charAt method, 128
chat server example sketch,
349-351
circuits. See electronic circuits
clear() function, 325

Client class. See EthernetClient
class
clock speed, 25, 277
close method, 377
Close option (File menu), 42
code files in libraries, 202,
208-210
code libraries, 29
code listings. See listings
coding. See programming
microcontrollers
color types (LCDs), 320-321
comma-separated values (CSV)
format, 380
Comment/Uncomment option
(Edit menu), 45
communication
LCD (liquid crystal display)
devices, 319
Arduino interface
connections, 323-325
color types, 320-321
display types, 319-320
downloading and installing
LCD shield library,
330-331
interface pins, 321-323
LCD shield, 329-330
LCD shield connections,
332-333
LCD shield library
functions, 331-332
LiquidCrystal library,
325-327
temperature display
example sketch,
327-329, 333-335
troubleshooting, 329
serial communication
protocols, 267-268
I2C (Inter-Integrated Circuit)
protocol, 277-284
serial ports, 268274
SPI (Serial Peripheral
Interface) protocol,
274277
compareTo method, 128

comparisons, 95-97
Boolean comparisons, 96-97
compound conditions, 97
negating condition checks, 98
numeric comparisons, 95-96
string comparisons, 96,
125-126
compilers, 28
compiling
functions in standard
libraries, 205
sketches, 60-61
compound conditions, 97
compound operators, 82
concat method, 128
configuring Arduino IDE, 51-52
connect method, 343
CONNECT method token, 357
connected method, 343
connections. See also interfaces
with Ethernet shield, 18-19
with LCD devices, 323-325
with LCD shield, 332-333
console window (Arduino IDE),
49-50
const variable qualifier, 79
constants, 79
in flash memory, 190-191
memory locations, 184
constrain() function, 85, 241
continue statements, 114-116
contrast on LCD devices, 329
contributed libraries, 206-208.
See also building libraries
controllers, 24
converting voltage values in
analog sensors, 292-293
Copy as HTML option (Edit
menu), 44
Copy for Forum option (Edit
menu), 44
Copy option (Edit menu), 44
copying
data structures, 138-140
strings, 125, 171-172
cos() function, 85
.cpp file extension, 202

CPU
components of, 24-25
programming
assembly language, 27-28
C programming language,
28-29. See also C
programming language
machine code, 26
createChar() function, 325
CSV (comma-separated values)
format, 380
current sinks, digital interfaces as,
222-223
current sources, digital interfaces
as, 222-223
cursor() function, 325
Cut option (Edit menu), 44

DAC (digital-to-analog converter),
236-237
data display with LCD shield, 19
data pointers. See pointers
data registers, 24
data structures, 133-134
arrays of, 140-142
assigning values, 136-138
copying, 138-140
creating, 134-136
initializing, 176
pointers and, 173-176
data types, 77-78, 190-191
DC motors, 303-304
direction control, 307-308
powering on/off, 305-306,
308-311
speed control, 306-307,
311-313
debugging sketches, 83. See also
troubleshooting
declaring. See also defining
flash memory data types,
190-191
local variables, 156-158
variables, 76-77

editor window (Arduino IDE), creating sketches

Decrease Indent option (Edit
menu), 45
decrement operator, 80
default statements, 99
#define directive, 210
defining. See also declaring
dynamic variables, 186-187
functions, 148
global variables, 155-156
delay() function, 84
delayMicroseconds() function, 84
DELETE method token, 357
dereference operators, 164
retrieving data, 166-167
storing data, 167
detach() function, 313
detachinterrupt() function, 255
DHCP (Dynamic Host
Configuration Protocol), 342-343
digital interfaces
input voltage levels, 226-229
interface 13, 229
interrupts
external interrupts,
252-260
ignoring, 264-265
pin change interrupts,
253-254, 260-262
polling versus, 251-252
timer interrupts, 254,
262-264
layouts, 220-221
LCD (liquid crystal display)
devices, 323-325
number of, 219-220
output voltage levels,
221-223
planning, 390-391
setting input/output modes,
221
SPI signals, 276
traffic signal example sketch,
223-226, 229-231, 364-370
troubleshooting
input voltage levels, 227
with serial monitor, 226
digitalRead() function, 226

digital-to-analog converter (DAC),
236-237
digitalWrite() function, 63, 221
direction of DC motors,
controlling, 307-308
display() function, 325
display types (LCDs), 319-320
displaying
data with LCD shield, 19
strings, 122
division operator, 80
documentation for standard
libraries, 205
double data type, 77
do-while statements, 106-107
downloading
Arduino IDE, 32-33
ATmega AVR microcontroller
instruction set, 27
contributed libraries, 206-208
LCD shield library, 330-331
Timer One library, 263
drivers, installing, 34-35
Due model, 13
analog interfaces, 236
digital interfaces, 219
I2C interface pins, 278
serial port interfaces, 269
voltage levels, 288
durability of SD cards, 375
Dynamic Host Configuration
Protocol (DHCP), 342-343
dynamic IP addresses, 342-343
dynamic variables, 184-189
changing, 187
defining, 186-187
example usage, 187-189
removing, 187

Eagle circuit board software,
400-401

Edit menu commands, 44-46

editor window (Arduino IDE),
creating sketches, 59-60

How can we make this index more useful? Email us at indexes@samspublishing.com

407

408 EEPROM Extended library

EEPROM Extended library, 197
EEPROM library, 203
EEPROM memory, 25, 194-197
comparison with SRAM and
flash memory, 181-182
example usage, 195-197
including library, 194-195
retrieving data, 196-197
EEPROMex library, 197
electronic circuits
analog sensors in, 287-288
resistance-based sensors,
295-297
temperature LCD display
example sketch,
327-329, 333-335
temperature logging
example sketch,
382-384
temperature sensors for
web servers, 361-364
touch sensors, 297-300
voltage-based sensors,
288-295
breadboard circuits, creating,
393-394
for DC motors
powering on/off, 308-311
speed control, 311-313
interfacing with sketches,
64-69
adding to projects, 68-69
analog output generation,
246-247
blinking LED example
sketch, 272-274,
280-284
breadboards, 67-68
external interrupts,
255-260
header socket usage,
64-66
input mapping, 242-245
pin change interrupts,
261-262
potentiometer example
sketch, 238-241

traffic signal example
sketch, 223-226,
229-231, 364-370
prototype circuit boards,
creating, 399-401
for servo motors, 314-316
electronically erasable
programmable read-only
memory. See EEPROM memory
else if statements, 93-95
else statements, 92-93
enabling external interrupts,
254-255
end() function
Serial library, 270
SPI library, 276
#endif directive, 210
endless loops, 106
endPacket method, 347
endsWith method, 128
endTransmission() function, 278
equality comparison, assignment
statements versus, 96
equals method, 128
equalslgnoreCase method, 128
equations, assignment statements
versus, 82
Esplora library, 203
Esplora model, 14
Ethernet class, 340-341
Ethernet library, 203
Ethernet model, 15, 278, 339
Ethernet shield, 18-19, 337-338
Ethernet Shield library, 340
chat server example sketch,
349-351
dynamic IP addresses,
342-343
Ethernet class, 340-341
EthernetClient class, 343-345
EthernetServer class, 345-347
EthernetUDP class, 347-349
IPAddress class, 341-342
EthernetClient class, 340,
343-345
EthernetServer class, 340,
345-347
EthernetUDP class, 340, 347-349

events, serial, 274
example sketches, modifying, 41
Examples option (File menu), 41
exFAT file format, 374
exists method, 376
external interrupts, 252-253
enabling, 254-255
traffic signal example sketch,
255-260
external memory, 182
external power sources, 17, 69
external reference voltages, 246

F

factorials, calculating, 158-160
FALLING external interrupt
mode, 254
FAT16 file format, 374
File class, 376-378
file extensions for sketches, 41
file formats for SD cards, 374
File menu commands, 40-43
files on SD cards
reading, 379-380
writing to, 379
find() function, 10
Find Next option (Edit menu), 45
Find option (Edit menu), 45
Find Previous option (Edit
menu), 46
finding serial ports in
Windows, 52
findUntil() function, 270
Fio model, 288
Firmata library, 203
Fix Encoding and Reload option
(Tools menu), 47
flash memory, 25, 189-193
comparison with SRAM and
EEPROM, 181-182
data types, 190-191
example usage, 192-193
retrieving data, 191-192
float data type, 77

floating-point values, integer
values versus, 78
flow control. See loops; structured
commands
flush() function, 270
flush method
EthernetClient class, 343
File class, 377
flushing SD card data, 378
folders on SD cards, 381-382
for statements, 107-109, 112
formatting sketches, 91
free() function, 187
functions
in Arduino, 83-86
advanced math
functions, 85
bit manipulation
functions, 86
calling, 148-150
defining, 148
global variables, 155-156
local variables, 156-158
passing values to,
152-154
random number
generators, 86
recursive functions,
158-160
returning values, 150-152
scope of variables, 154
Serial class, 83-84
time functions, 84-85
troubleshooting, 148
user-defined, 147
in bootloader, 57-58
compiling in standard
libraries, 205
in EEPROM memory, 194
for flash memory access, 191
LCD shield library, 331-332
LiquidCrystal library, 325-326
passing pointers to, 176-178
private functions, 211
public functions, 211
referencing in standard
libraries, 204-205
Serial library, 269-272

IDE (integrated development environment) 409

Servo library, 313
SPI library, 276-277
for strings, 122-125
testing results, 97
Wire library, 278-280

gate leads in transistors, 305
GET method token, 357
getBytes method, 128
global variables, 80

defining, 155-156

memory locations, 184

overriding, 158
GND header socket ports, 65=66
graphical LCD devices, 319-320
grounding analog sensors, 290
grouping multiple statements

in else statements, 92

in if statements, 90-92
GSM library, 203

.h file extension, 202
hardware
external interrupts, 252-253
open source hardware, 9
H-bridges, 307-308
HD44780 controller chips,
321-322
HEAD method token, 357
header files in libraries, 202,
210-211
header sockets, 10-11
accessing, 66
electronic circuit interfaces,
64-66
on Uno R3 unit, 15-16
headers (HTTP)
request headers, 358
response header lines,
360-361

heap data area, 183-185
dynamic variables, 185-189
changing, 187
defining, 186-187
example usage, 187-189
removing, 187
Help menu commands, 48
highByte() function, 86
high-current devices, digital
interface connections, 221-223
higher-level programming
languages, 28-29
history of Arduino, 11-12
home() function, 325
HTML in sketches, 44
HTTP (Hypertext Transfer
Protocol), 355
requests, 356-358
request headers, 358
request line, 357
responses, 358-361
response header lines,
360-361
status line, 358-360
sessions, 355-356

I2C (Inter-Integrated Circuit)
protocol, 277-284
blinking LED example sketch,
280-284
interfaces, 278
Wire library functions,
278-280
ICSP (in-circuit serial
programming) header, 390
IDE (integrated development
environment)

Arduino IDE, 31-32
console window, 49-50
downloading, 32-33
Edit menu commands,

44-46
editor window, 59-60

How can we make this index more useful? Email us at indexes@samspublishing.com

410 IDE (integrated development environment)

File menu commands,
40-43
Help menu commands, 48
interface, 39-40
Linux installation, 37
message area, 49-50
0S X installation, 36-37
serial monitor, 52-54
setup, 51-52
shield libraries, 32
Sketch menu commands,
46
toolbar, 49
Tools menu commands,
46-48
Windows installation,
33-36
Atmel Studio package, 30
if statements, 89-90
compound conditions, 97
grouping multiple statements,
90-92
negating condition checks, 98
#ifndef directive, 210
ignoring interrupts, 264-265
Import Library option (Sketch
menu), 46
importing. See also installing
contributed libraries, 206-208
PinChangelnt library, 260-261
Timer One library, 263
in-circuit serial programming
(ICSP) header, 390
#include directive, 58-59, 204
Ethernet Shield library, 340
header files, 208
including libraries, 58-59
EEPROM memory, 194-195
standard libraries, 204
Increase Indent option (Edit
menu), 45
increment operator, 80
index values (arrays), 110
indexOf method, 128
initializing data structures, 176
input flapping, 227-228

INPUT interface mode
setting, 221
input mode
for analog interfaces
detecting signals, 236
limiting values, 241
mapping values, 242-245,
292
potentiometer example
sketch, 238-241
reference voltage changes,
245-246
for digital interfaces
setting, 221
traffic signal example
sketch, 229-231
voltage levels, 226-229
INPUT_PULLUP interface mode
setting, 221, 228-229
installing. See also importing
Arduino IDE
for Linux, 37
for OS X, 36-37
for Windows, 33-36
drivers, 34-35
LCD shield library, 330-331
libraries, 212
instruction set, 26-27
int data type, 77, 79
integer values, floating-point
values versus, 78
integrated development
environment (IDE). See IDE
(integrated development
environment)
interface 13 as input, 229
interfaces, 10-11. See also
electronic circuits
analog interfaces. See also
analog sensors
input signals, detecting,
236
layouts, 237-238
limiting input values, 241
mapping input values,
242-245, 292

output signals, generating,
236-237, 246-247
planning, 389-390
potentiometer input
example sketch,
238241
reference voltage changes,
245-246
Arduino IDE, 39-40
digital interfaces
input voltage levels,
226-229
interface 13, 229
layouts, 220-221
number of, 219-220
output voltage levels,
221-223
planning, 390-391
setting input/output
modes, 221
traffic signal example
sketch, 223-226,
229-231
troubleshooting, 226
I2C (Inter-Integrated Circuit)
protocol, 278
interrupts
external interrupts,
252-260
ignoring, 264-265
pin change interrupts,
253-254, 260-262
polling versus, 251-252
timer interrupts, 254,
262-264
1/0 interface, 25-26
LCD (liquid crystal display)
devices
Arduino interface
connections, 323-325
interface pins, 321-323
LCD shield connections,
332-333
SD cards, 375-376
serial port interfaces,
268-269

sketches with electronic
circuits, 64-69
adding to projects, 68-69
breadboards, 67-68
header socket usage,
64-66
SPI (Serial Peripheral
Interface) protocol, 274-276
on Uno R3 unit, 15
Inter-Integrated Circuit (I2C)
protocol, 277-284
blinking LED example sketch,
280-284
interfaces, 278
Wire library functions,
278-280
internal reference voltages,
245-246
interrupt service routine (ISR),
252, 255
interrupts
external interrupts, 252-253
enabling, 254-255
traffic signal example
sketch, 255-260
ignoring, 264-265
pin change interrupts,
253-254
importing PinChangelnt
library, 260-261
traffic signal example
sketch, 261-262
polling versus, 251-252
timer interrupts, 254
importing Timer One
library, 263
testing, 263-264
interrupts() function, 264-265
1/0 interface in ATmega AVR
microcontrollers, 25-26
IOREF header socket port, 65
IP addresses
dynamic IP addresses,
342-343
static addresses, 341-342
IPAddress class, 340-342

isDirectory method, 377
ISR (interrupt service routine),
252, 255

K-L

kits, 18

lastindexOf method, 128
LCD (liquid crystal display)
devices, 319
Arduino interface connections,
323-325
color types, 320-321
display types, 319-320
interface pins, 321-323
LCD shield, 329-330
connections, 332-333
downloading and installing
library, 330-331
library functions, 331-332
LiquidCrystal library
example usage, 327
functions, 325-326
temperature display example
sketch, 327-329, 333-335
troubleshooting, 329
LCD shield, 19, 329-330
connections, 332-333
downloading and installing
library, 330-331
library functions, 331-332
temperature display example
sketch, 333-335
LDR (light-dependent
resistor), 296
LEDs
resistors and, 256
traffic signal example sketch.
See traffic signal example
sketch
on Uno R3 unit, 16-17
WiFi shield, 339
left shift operator, 80
leftToRight() function, 325

listings 411

legal issues, trademark protection
of Arduino name, 9
length method, 128
Leonardo model, 13
analog interfaces, 236
digital interfaces, 219
external interrupts, 253
12C interface pins, 278
libraries, 201
building
code file creation,
208-210
example usage, 212-214
header file creation,
210-211
installing, 212
zip file creation, 211-212
components of, 202
contributed libraries, 206-208
including, 58-59, 194-195
location, 202-203
standard libraries
compiling functions, 205
documentation, 205
example usage, 205-206
including, 204
list of, 203-204
referencing functions in,
204-205
troubleshooting, 213
light meter example sketch,
296-297
light sources for LCDs, 320-321
light-dependent resistor (LDR),
296
LilyPad model, 15
limiting analog input values, 241
Linux, Arduino IDE installation, 37
liquid crystal display. See LCD
(liquid crystal display) devices
LiquidCrystal library, 203
example usage, 327
functions, 325-326
temperature display example
sketch, 327-329
listings
sketch0401 code, 59
sketch0602 code, 94

How can we make this index more useful? Email us at indexes@samspublishing.com

412 local variables

local variables, 80, 156-158
locallP method, 340
location of libraries, 202-203
logic flow control. See loops;
structured commands
logical AND operator, 80, 97
logical NOT operator, 80, 98
logical OR operator, 80, 97
long data type, 77, 79
loop function, 58
loops, 103-104
arrays, 109-112
break statements, 113-114
continue statements, 114-116
do-while statements, 106-107
endless loops, 106
nesting, 112-113
for statements, 107-109, 112
while statements, 104-106
LOW external interrupt mode, 255
lowByte() function, 86
low-current devices, digital
interface connections, 221-223

MAC (Media Access Control)
addresses, 341
machine code, 26
maintain method, 340
malloc() function, 186-187
map() function, 85, 242-245, 292
mapping
analog input values, 242-245,
292
LCD interface pins, 323-325
master mode (SPI), 274
math operators, 80-82
max() function, 85
Media Access Control (MAC)
addresses, 341
Mega model, 13
analog interfaces, 236
digital interfaces, 219
external interrupts, 253
I2C interface pins, 278
serial port interfaces, 269

memory
in ATmega AVR
microcontrollers, 9-10, 25
comparison among types,
181-182
creating dynamic variables,
185-189
EEPROM memory, 194-197
flash memory, 189-193
SRAM memory, 183-185
pointers. See pointers
variables. See variables
memory address wrap, 195
memory collisions, 185
memory leaks, 185
menu bar
Edit menu commands, 44-46
File menu commands, 40-43
Help menu commands, 48
Sketch menu commands, 46
Tools menu commands, 46-48
message area (Arduino IDE),
49-50
metal-oxide-semiconductor
field-effect transistor
(MOSFET), 306
method tokens (HTTP), 357
methods
Ethernet class, 340
EthernetClient class, 343
EthernetServer class, 345
EthernetUDP class, 347
File class, 377-378
SD class, 376-377
String object methods
comparison, 128-129
manipulation, 130-131
Micro model, 14
analog interfaces, 236
digital interfaces, 219
microcontrollers
ATmega AVR microcontrollers,
9-10
components of, 23-26
EEPROM memory, 194-197
flash memory, 189-193
memory comparisons,
181-182
SRAM memory, 183-185

block diagram, 8, 24
defined, 7-8
programming
Arduino programming
language. See Arduino
programming language
assembly language, 27-28
C programming language,
28-29. See also C
programming language
machine code, 26
micros() function, 84
Micro-SD breakout board, 376
millis() function, 84
min() function, 85
Mini model
analog interfaces, 236
digital interfaces, 219
missing libraries, troubleshooting,
213
mkdir method, 376, 381
models of Arduino, 12-15
digital interfaces, number of,
219-220
Due, 13
Esplora, 14
Ethernet, 15, 339
Leonardo, 13
LilyPad, 15
Mega, 13
Micro, 14
Uno, 12-13, 15-17
Yun, 14-15
modifying example sketches, 41
modulus operator, 80
MOSFET
(metal-oxide-semiconductor
field-effect transistor), 306
motor shield, 19, 316
motors, 18
DC motors, 303-304
direction control, 307-308
powering on/off, 305-306,
308-311
speed control, 306-307,
311-313

servo motors, 304
positioning example
sketch, 314-316
Servo library, 313-314
stepper motors, 304
multiple statements, grouping
in else statements, 92
in if statements, 90-92
multiple variables in for
statements, 112
multiplication operator, 80
multi-user environments, 207

name method, 377
naming conventions
constants, 79
variables, 76-77
negating condition checks, 98
negative LCD displays, 320-321
nesting loops, 112-113
network connectivity
with Ethernet shield, 18-19,
337-338
chat server example
sketch, 349-351
dynamic IP addresses,
342-343
Ethernet class, 340-341
Ethernet Shield library,
340
EthernetClient class,
343-345
EthernetServer class,
345-347
EthernetUDP class,
347-349
IPAddress class, 341-342
with HTTP, 355
requests, 356-358
responses, 358-361
sessions, 355-356
web browsers, controlling
Arduino from, 364-370

web servers, building,
361-364
with WiFi shield, 339
New icon (toolbar), 49
New option (File menu), 40
Newline option (serial
monitor), 54
noAutoscroll() function, 325
noBlink() function, 325
noCursor() function, 325
noDisplay() function, 325
nointerrupts() function, 264
NOT operator, 80, 98
NULL label, 167-168
null pointers, 167-168
null-terminated strings, 120
numeric comparisons, 95-96

o

onReceive() function, 278
onRequest() function, 278
Open icon (toolbar), 49
open method, 376, 382
Open option (File menu), 41
open source hardware, 9
openNextFile method, 377
operators
compound operators, 82
math operators, 80-82
numeric comparisons, 95
order of operations, 82
pointer operators, 164
OPTIONS method token, 357
OR operator, 80, 97
order of operations, 82
0S X
Arduino IDE installation, 36-37
zip file creation, 212
out of memory errors,
troubleshooting, 186
OUTPUT interface mode
setting, 221

pin change interrupts 413

output mode
for analog interfaces
generating signals,
236-237, 246-247
reference voltage changes,
245-246
for digital interfaces
setting, 221
traffic signal example
sketch, 223-226
voltage levels, setting,
221-223
output of serial ports
Serial class functions, 83-84
viewing, 63
overflowing
LCD displays, 327
strings values, 122
overriding global variables, 158

P

Page Setup option (File menu), 43
parameters, 152
parseFloat() function, 270, 272
parselnt() function, 270, 272
parsePacket method, 347
passing to functions

pointers, 176-178

values, 152-154
Paste option (Edit menu), 45
PCB (printed circuit board), 67
peek() function, 270
peek method, 377
personal libraries, location of, 203
pgm_read_byte() function, 191
pgm_read_word() function, 191
pgmspace.h library, 191
photoresistor example sketch,

296-297

pin change interrupts, 253-254

importing PinChangelnt library,

260-261
traffic signal example sketch,
261-262

How can we make this index more useful? Email us at indexes@samspublishing.com

414 PinChangelnt library

PinChangelnt library, 253,
260-261
pinMode() function, 221
planning projects, 387-389
analog interfaces, 389-390
breadboard circuits, 393-394
components needed, 391-392
digital interfaces, 390-391
schematics, 392
sketches, 394-395
PoE (Power over Ethernet), 338
pointers, 163-166
arithmetic with arrays,
168171
data structures and, 173-176
null pointers, 167-168
passing to functions, 176-178
printing, 166
referencing strings, 172-173
retrieving data, 166-167
storing data, 167
string manipulation, 171-172
void pointers, 168
polling, interrupts versus, 251-252
ports
lower header sockets, 65
upper header socket, 66
position method, 377
positioning servo motors example
sketch, 314-316
positive LCD displays, 320-321
POST method token, 357
potentiometer example sketch
input mapping, 242-245
input mode, 238-241
servo motors, 314-316
pow() function, 85
power, external sources, 17
Power over Ethernet (PoE), 338
powering on/off
Arduino with USB hub, 69
DC motors, 305-306,
308-311
precedence in mathematical
operations, 82
Preferences option (File
menu), 43

print() function
LiquidCrystal library, 325
Serial library, 63, 83,
270271
print method
EthernetClient class, 343
EthernetServer class, 345
File class, 377
Print option (File menu), 43
printed circuit board (PCB), 67
printing pointers, 166
printin() function, 83, 270-271
printin method
EthernetClient class, 343
EthernetServer class, 345
File class, 377
private functions, 211
Pro model, 288
processors on ATmega AVR
microcontrollers, 9-10
prog_char flash data type, 190
prog_int16_t flash data type, 190
prog_int32_t flash data type, 190
prog_uchar flash data type, 190
prog_uintl16_t flash data
type, 190
prog_uint32_t flash data
type, 190
PROGMEM keyword, 190
program counters, 24
Programmer option (Tools
menu), 47
programming microcontrollers
Arduino programming
language. See Arduino
programming language
assembly language, 27-28
C programming language,
28-29. See also C
programming language
machine code, 26
programs. See sketches
project development
breadboards, creating circuits,
393-394
prototype circuit boards,
creating, 399-401
with Prototype shield, 20

requirements
for analog interfaces,
389-390
components needed,
391-392
determining, 387-389
for digital interfaces,
390-391
schematics, creating, 392
sketches
planning, 394-395
testing, 398-399
writing, 395-398
prototype circuit boards, creating,
399-401
Prototype shield, 20, 399-400
public functions, 211
pulldown circuits, 228
pullup circuits, 228-229
PUT method token, 357
PuTTY package, 351
PWM (pulse-width modulation),
26, 237, 246, 306-307,
311-313

Q

qualifiers for variables, 79

Quit option (File menu), 43

quotes for characters and
strings, 121

random() function, 86
random number generators, 86
randomSeed() function, 86
RC circuits, 298
read() function
EEPROM library, 194
Serial library, 270, 272
Servo library, 313
Wire library, 278

read method
EthernetClient class, 343
EthernetUDP class, 347
File class, 377
readButtons() function, 331
readBytes() function, 270, 272
readBytesUntil() function,
270, 272
reading files on SD cards,
379-380
realloc() function, 187
recursive functions, 158-160
Redo option (Edit menu), 44
reference operators, 164, 170
reference voltages, changing,
245-246, 290-291
referencing. See also calling
functions
Ethernet Shield library, 340
functions in standard libraries,
204-205
strings with pointers, 172-173
reformatting SD cards, 374
relays, 305
remotelP method, 347
remotePort method, 347
remove method, 376
removing dynamic variables, 187
replace method, 128
request headers (HTTP), 358
request line (HTTP requests), 357
requestFrom() function, 278
requests (HTTP), 356-358
request headers, 358
request line, 357
requirements, determining,
387-389
for analog interfaces, 389-390
components needed, 391-392
for digital interfaces, 390-391
reserve method, 128
Reset button on Uno R3 unit,
17, 92
RESET header socket port, 65
resistance-based analog sensors,
295-297

serial communication protocols 415

resistors, 17, 223
LEDs and, 256
in motor circuits, 306
in RC circuits, 297-298
as voltage dividers, 289-290
response header lines (HTTP),
360-361
responses (HTTP), 358-361
response header lines,
360-361
status line, 358-360
restarting sketches, 64, 92
retrieving data
from EEPROM memory,
196-197
from flash memory, 191-192
with pointers, 166-167,
173-176
with serial ports, 272
return code (functions),
testing, 97
return statement, 150
returning values
from functions, 150-152
in pointers, 178
rewindDirectory method, 377
right shift operator, 80
rightToLeft() function, 325
RISING external interrupt
mode, 254
rmdir method, 376, 382
Robot_Control library, 203
RS-232 serial interfaces, 269
running sketches, 63-64
RX <- 0 header socket port, 66

S

Save As option (File menu), 42
Save icon (toolbar), 49

Save option (File menu), 42
saving text editor files, 210
schematics, creating, 392

scope of variables, 80
in functions, 154
global variables, 155-156
local variables, 156-158
scrollDisplayLeft() function, 325
scrollDisplayRight() function, 325
SD cards
files
reading, 379-380
writing to, 379
folder organization, 381-382
interfaces, 375-376
SD library, 376-378
File class methods,
377-378
SD class methods,
376-377
specifications, 373-375
temperature logging example
sketch, 382-384
SD class, 376-377
SD library, 203, 376-378
File class methods, 377-378
SD class methods, 376-377
Secure Digital. See SD cards
seek method, 377
Select All option (Edit menu), 45
semicolon (;), terminating
statements, 77
sensitivity
of touch sensors, 300
of voltage-based analog
sensors, 291-292
sensors, 18. See also analog
sensors
Serial class functions, 83-84
serial communication protocols,
267-268
I2C (Inter-Integrated Circuit)
protocol, 277-284
blinking LED example
sketch, 280-284
interfaces, 278
Wire library functions,
278-280
serial ports, 268-274
blinking LED example
sketch, 272-274

How can we make this index more useful? Email us at indexes@samspublishing.com

416

interfaces, 268-269
Serial library, 269-272
SPI (Serial Peripheral
Interface) protocol, 274-277
functions, 276-277
interfaces, 274-276
serial events, 274
Serial library
functions, 269-272
interrupts in, 255
serial monitor, 52-54
with external power
source, 69
viewing serial port output, 63
Serial Monitor icon (toolbar), 49
Serial Monitor option (Tools
menu), 47
Serial Peripheral Interface (SPI)
protocol, 274-277, 390
Ethernet shield, 338
functions, 276-277
interfaces, 274-276
Serial Port option (Tools
menu), 47
serial ports, 268-274
blinking LED example sketch,
272274
finding in Windows, 52
interfaces, 268-269
output
Serial class functions,
83-84
viewing, 63
Serial library, 269-272
serialEvent() function, 274
Server class. See EthernetServer
class
server communication protocols,
345
Servo library, 203, 313-314
servo motors, 304
positioning example sketch,
314-316
Servo library, 313-314
setBacklightColor() function, 331
setBitOrder() function, 276-277
setCharAt method, 130

serial communication protocols

setClockDivider() function,
276-277
setCursor() function, 325
setDataMode() function, 276-277
setTimeout() function, 270
setup for Arduino IDE, 51-52
setup function, 58
shield libraries, 32. See also
shields
including, 58-59
list of, 203-204
shields
defined, 18
Ethernet shield, 18-19,
337-338
chat server example
sketch, 349-351
dynamic IP addresses,
342-343
Ethernet class, 340-341
Ethernet Shield library,
340
EthernetClient class,
343-345
EthernetServer class,
345-347
EthernetUDP class,
347-349
IPAddress class, 341-342
LCD shield, 19, 329-330
connections, 332-333
downloading and installing
library, 330-331
library functions, 331-332
temperature display
example sketch,
333-335
motor shield, 19, 316
Prototype shield, 20, 399-400
SD card support, 375-376
WiFi shield, 339
Show Sketch Folder option
(Sketch menu), 46
signal duty cycle, 237
sin() function, 85
size method, 377
sizeof function, 111-112
sizing arrays, 111-112, 121-122

Sketch menu commands, 46
Sketchbook option (File
menu), 41
sketches. See also Arduino
programming language; listings
analog sensor interfaces
photoresistor example
sketch, 296-297
temperature detection
example sketch,
293-295
temperature LCD display
example sketch,
327-329, 333-335
temperature logging
example sketch,
382-384
temperature sensors for
web servers, 361-364
touch sensor example
sketch, 298-300
chat server example sketch,
349-351
coding format, 57-58
compiling, 60-61
DC motors
powering on/off, 308-311
speed control, 311-313
debugging, 83
editor window, 59-60
electronic circuit interfaces,
64-69
adding to projects, 68-69
analog output generation,
246-247
blinking LED example
sketch, 272-274,
280-284
breadboards, 67-68
external interrupts,
255-260
header socket usage,
64-66
input mapping, 242-245
pin change interrupts,
261-262
potentiometer example
sketch, 238-241

traffic signal example
sketch, 223-226,
229-231, 364-370
example sketches, modifying,
41
file extensions, 41
formatting, 91
HTML in, 44
libraries, including, 58-59
planning, 394-395
restarting, 64, 92
running, 63-64
servo motors, positioning,
314-316
testing, 398-399
uploading, 62-63
writing, 395-398
slave mode (SPI), 274
sockets, 10-11
accessing, 66
electronic circuit interfaces,
64-66
on Uno R3 unit, 15-16
SoftwareSerial library, 203
speed of DC motors, controlling,
306-307, 311-313
SPI (Serial Peripheral Interface)
protocol, 274-277, 390
Ethernet shield, 338
functions, 276-277
interfaces, 274-276
SPI library, 203, 276-277
sqrt() function, 85
SRAM memory, 25
comparison with EEPROM and
flash memory, 181-182
dynamic variables, 185-189
changing, 187
defining, 186-187
example usage, 187-189
removing, 187
heap data area, 183-185
stack data area, 183-185
stack data area, 183-185
stack pointers, 24

standard libraries
compiling functions, 205
documentation, 205
example usage, 205-206
including, 204
list of, 203-204
referencing functions in,
204-205
startsWith method, 128
statements, terminating, 77
static IP addresses, 341-342
static random-access memory.
See SRAM memory
status codes (HTTP), list of, 359
status line (HTTP responses),
358-360
status registers, 24
Stepper library, 203
stepper motors, 304
stop method
EthernetClient class, 343
EthernetUDP class, 347
storage. See also memory
SD cards
folder organization,
381-382
interfaces, 375-376
reading files, 379-380
SD library, 376-378
specifications, 373-375
temperature logging
example sketch,
382-384
writing to files, 379
of strings, 78
of values with pointers, 167,
173-176
strcmp() function, 123, 125-126
strcemp_P() function, 191
strcpy() function, 123, 125, 137
strict typing, 76
String objects, 126-129
creating and manipulating,
126-128
in data structures, 142
methods
comparison, 128-129
manipulation, 130-131

switches 417

strings
in Arduino programming
language, 126-129
creating and manipulating,
126-128
manipulating, 130-131
String object methods,
128-129
in C programming language,
120-126
comparing, 125-126
creating, 121-122
functions for, 122-125
comparisons, 96
copying, 125
displaying, 122
explained, 119-120
manipulating with pointers,
171172
referencing with pointers,
172-173
storing, 78
strlen() function, 123
strlen_P() function, 191
strstr() function, 123
struct statement, 134-136
structured commands. See also
loops
comparisons, 95-97
Boolean comparisons,
96-97
compound conditions, 97
negating condition checks,
98
numeric comparisons,
95-96
string comparisons, 96
else if statements, 93-95
else statements, 92-93
if statements, 89-92
switch statements, 98-99
structures. See data structures
substring method, 128
subtraction operator, 80
switch bounce, 260, 332
switch statements, 98-99
switches, 17, 229-231

How can we make this index more useful? Email us at indexes@samspublishing.com

418 tan() function

T

tan() function, 85
Telnet clients, 351
temperature detection example
sketch, 293-295
for LCD displays, 327-329,
333-335
for SD cards, 382-384
for web servers, 361-364
temperature monitor example
project
analog interfaces, 389-390
breadboard circuits, creating,
393-394
components needed, 391-392
digital interfaces, 390-391
planning, 388-389
schematics, creating, 392
sketches
planning, 394-395
testing, 398-399
writing, 395-398
terminating statements, 77
testing
function results, 97
12C interface, 280-284
serial ports, 272-274
sketches, 398-399
timer interrupts, 263-264
text. See strings
text editor files, saving, 210
TFT library, 203
time functions, 84-85
timer interrupts, 254
importing Timer One library,
263
testing, 263-264
Timer One library, importing, 263
TMP36 sensor, 293-295, 361-364
toCharArray method, 128
toint method, 128
toLowerCase method, 130
toolbar (Arduino IDE), 49
Tools menu commands, 46-48
touch sensors, 297-300

toUpperCase method, 130
TRACE method token, 357
trademark protection of Arduino
name, 9
traffic signal example sketch
controlling from web browser,
364-370
external interrupts, 255-260
input mapping, 242-245
input mode, 229-231
output mode, 223-226
pin change interrupts,
261-262
transfer() function, 276-277
transistors, 305-306
Transistor-transistor-logic
(TTL)-level voltages, 269
trepy_P() function, 191
trim method, 130
troubleshooting
compiler errors, 61
debugging sketches, 83
digital interfaces
input voltage levels, 227
with serial monitor, 226
flushing SD card data, 378
functions, 148
importing PinChangelnt
library, 261
LCD (liquid crystal display)
devices, 329
memory
EEPROM memory, 194-195
out of memory errors, 186
missing libraries, 213
modifying example sketches,
41
switch bounce, 260
TTL
(Transistor-transistor-logic)-level
voltages, 269
TX -> 1 header socket port, 66
.txt file extension, 210

U

Ubuntu, Arduino IDE
installation, 37
UDP (User Datagram Protocol),
347-349
Undo option (Edit menu), 44
unions, 142-145
Universal Resource Indicator
(URI), 357
unnamed data structures, 136
Uno model, 12-13
analog interfaces, 236
digital interfaces, 219
external interrupts, 253
I2C interface pins, 278
specifications, 15-17
unsigned variable qualifier, 79
Upload icon (toolbar), 49
Upload option (File menu), 42
Upload Using Programmer option
(File menu), 42
uploading
bootloader, 48
sketches, 62-63
URI (Universal Resource Indicator),
357
USB A-B cables, 17
USB hub, powering on/off
Arduino, 69
USB ports on Uno R3 unit, 16
USB serial interface, 268
Use Selection for Find option (Edit
menu), 46
User Datagram Protocol (UDP),
347-349
user-created libraries. See building
libraries
user-defined functions, 147
calling, 148-150
defining, 148
passing values to, 152-154
recursive functions, 158-160
returning values, 150-152
scope of variables, 154
global variables, 155-156
local variables, 156-158
troubleshooting, 148

Vv

values
analog input values
limiting, 241
mapping, 242-245, 292
assigning
to data structures,
136-138
to variables, 77
passing to functions, 152-154
retrieving
from EEPROM memory,
196-197
from flash memory,
191-192
with pointers, 166-167,
173-176
returning
from functions, 150-152
in pointers, 178
storing with pointers, 167,
173-176
voltage values, converting,
292-293
variable resistors, 17
variables
arrays. See arrays
assigning values, 77
data structures. See data
structures
data types, 77-78
declaring, 76-77
dynamic variables, 184-189
changing, 187
defining, 186-187
example usage, 187-189
removing, 187
in flash memory, 190-191
pointers. See pointers
qualifiers, 79
scope, 80
in functions, 154
global variables, 155-156
local variables, 156-158
unions, 142-145
viewing, 83

Verify icon (toolbar), 49
Verify/Compile option (Sketch
menu), 46
viewing
serial port output, 63
variables, 83
Vin header socket port, 65
void data type, 148
void pointers, 168
voltage dividers, 289-290,
295-296
voltage levels
in analog sensors, 288-291
in capacitors, detecting,
297-298
for digital interfaces
in input mode, 226-229
in output mode, 221-223
reference voltages, changing,
245-246, 290-291
voltage-based analog sensors,
288-293
converting voltage values,
292-293
sensitivity of, 291-292
temperature detection
example sketch, 293-295
voltage levels, 288-291

w

Wave shield, 376

web browsers, controlling Arduino

from, 364-370
web servers, building, 361-364,
366-370
while statements, 104-106
Wifi library, 203
WiFi shield, 339
Windows

Arduino IDE installation, 33-36

serial ports, finding, 52
zip file creation, 211
Wire library, 203, 278-280

wires, 17
word data type, 77

zip files 419

write() function
EEPROM library, 194
LiquidCrystal library, 325
Serial library, 270-271
Servo library, 313
Wire library, 278
write method
EthernetClient class, 343
EthernetServer class, 345
EthernetUDP class, 347
File class, 377
write speeds (SD cards), 374
writeMicroseconds() function, 313
writing
to files on SD cards, 379
sketches, 395-398

Y

Yun model, 14-15
analog interfaces, 236
digital interfaces, 219

y 4

zip files, creating, 211-212

How can we make this index more useful? Email us at indexes@samspublishing.com

	Table of Contents
	Introduction
	HOUR 4: Creating an Arduino Program
	Building an Arduino Sketch
	Creating Your First Sketch
	Interfacing with Electronic Circuits
	Summary
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K–L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

