Arduino
Applied

Comprehensive Projects for
Everyday Electronics

Neil Cameron

ApPress’




Arduino Applied

Comprehensive Projects for
Everyday Electronics

Neil Cameron

Apress’



Arduino Applied: Comprehensive Projects for Everyday Electronics

Neil Cameron
Edinburgh, UK

ISBN-13 (pbk): 978-1-4842-3959-9 ISBN-13 (electronic): 978-1-4842-3960-5
https://doi.org/10.1007/978-1-4842-3960-5

Library of Congress Control Number: 2018965611

Copyright © 2019 by Neil Cameron

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3959-9.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-3960-5

Table of Contents

About the AUthOr ..........ccccmmnnmmmnsssmnssss s xiii
About the Technical ReVIEWET .......ccsssesssssssassssnsssnsssassssassssnsssansssnsssas Xv
Preface ......ccouseemmmssmnmsssnnmsssnnmsssnsssssnsssssnsssssnsssssnnssssnnssssnnsnssnnnnssnnnnssns Xvii
Chapter 1: Introduction..........ccccvnnemmmnnnnsennmmmssssnmmssssnmsssssssssnmmms 1
Arduing UNO ..o s s 1
Breadboards..........ccouerinirniniree s 3
Arduing IDE SOIWAE.........cccveeiererirrsesesese s se s sesnssssssesens 4
Arduing IDE SKETCH .......ccoveoeeercereere e 5
Run the BlinK SKEICH.......covveoereerecrencer e 6
Electricity EXplaiNgd.........cooeeereierssernesese s s sens 7
Revise the BIiNK SKEICH ........ccueciicernisircse e 8
Pulse Width Modulation ... 12
Opening and Saving SKEICHES ......ccvvvvvrvriernnnrnere s sse e 14
11T 111 T o O 15
Components List ... s 15
Chapter 2: SWItChes .......ccvcmmmsemmssssnmmsssssmsssnsmsssssssssnsssssnsssssnnssssnnsssns 17
Tactile SWILCH......covceeceerec e —— 17
Comparison OPErators .......ccvvvrverierernnensere s s s ae e saesnes 21
Debouncing @ SWItCH ......cccvere e enees 22
Hardware Switch DEDOUNCE...........ccovureeririrr s 25

iii



TABLE OF CONTENTS

Ball SWICN ... 27
SUMMANY....eieeererere e e e r e se s e nre e 29
ComPONENtS LISt ..o s s 29
Chapter 3: SENSOrS ......ccccmrnisssmmmmmssssnnnmmsssssnnmsssssnsnesssssnssessssnnnsessssnnnnss 31
TEMPErAtUrE SENSON.......ccerrieerrresrrreserrsse s e e se e srn e s e 31
VariabIEs ..o —————————— 35
HUMIAITY SBNSOL...cceiieieeiriererererrere s saeses e sse e e s s saesss e s e ssesassessessesaesesnensesaens 37
Library Installation ... 39
Library Installation Method ... 39
Library Installation Method 2............ccceirinnininnncrcne e 39
Library Installation Method 3............coocririnnirrn e 40
Light Dependent ReSiSTOr ... sesnens 42
Light Dependent Resistor and Several LEDS..........c.c.ccovenmrenernnesessenesenesensesenns 46
VOItAge DIVIART .....coveeeerreerreesisese s srnnnn s 48
Ultrasonic DiStanCe SENSOT ... sssssssssas 50
SpPEed Of SOUNG.....ccevvererrerere s s sae e s s re e e naennes 56
Hall EffECt SENSOT .....vcvcecerirircecere s 57
SOUNA SENSOK......coeeeeecreeerer e s e e e se s 61
INFrare@d SENSOK .......ccoveeeerrecrerese s 64
Infrared Distance MOAUIE...........cooveererernerrresere e 67
Passive INfrared SENSOK .........cucceierernsernesrse s 69
Accelerometer and GYFOSCOPE ......ccuverererrersereressersersessesessessessessssessessesssssssessees 72
1] 4= 7 77
COMPONENTS LISt ..ot s 78

iv



TABLE OF CONTENTS

Chapter 4: Liquid Crystal DiSplay ......ccccussensrmssssnsnssssssnsssssssssnssssssnnnnss 79
Contrast Adjustment with PWM ... 83
SCrOllNG TEXL..... e s 85
LCD With 12C BUS.....cccoeeueuressssssssssssssssssssssssese e sssssssssssssssssssssssssssssnsnsnenes 87
12C with Temperature and Pressure SENSOr..........ccevevnininennnensesse s ssssessessens 88
16x4 LCD Cursor POSItioNING.......cccvevnrnieniennnensensesessssessesessssessessessesessessessens 93
Display Entered Values 0n LCD .......cccccvvververiernnensersesessssessessessesessessessessssessessens 95
LCD Character Set..........covrerernnsnmnerrsesrsssesese s ses s s sesssssssssaes 96
Additional CharaClers..........ccovoreerrnerereers e 98
SUMMANY....eeeereeeseree s se s s e ne e e 100
Components List ... 100

Chapter 5: 7-Segment LED Display .......c..ccccmmmsssmnnnnsssssnnssssssssnnsssssnns 101
BasiC SChEMALIC ........ccccvririrrs s 102
PWM and LED Brighiness.......cccccvvrvrnnnininsnnn s sesessessss s sesessssssessessens 105
SHIft REGISTEN ...ttt e 107
Shift Register, PWM, and LED Brightness..........cccccriennnnininnnnsnsesiesnsensennens 113
Alphanumeric Characters ... snes 116
SUMMANY....ceiveerieeresese e e e e e e ne e e 118
Components LiSt ..o s s s sessesnens 118

Chapter 6: 4-Digit 7-Segment DiSplay .......ccceusssennnmsssssnnnssssssnnssssssnns 119
FUNCLIONS ...t s 123
0ne Shift REgISTEN .....ccceicirre st 126
TwO Shift REGISIEIS .....cveerecr s 131
10T 111 T o SR 135
Components LiSt ... s 136



TABLE OF CONTENTS

Chapter 7: 8x8 Dot Matrix DiSplay .......ccoscemressssnnnsmssssnnnsssssssnnssssssnns 137
0ne Shift REQISTEN .....c.cceerecrrerir et 143
TWO Shift REGISIEIS .....cveicccr s 146
SCrOIING TEXL.....e i e 150
SUMMANY ...t e nr e 156
CompOoNENts LISt ......cccvovirinirirririe e s s ssesnens 156

Chapter 8: Servo and Stepper Motors .........cccssssssasssssssssnsssassssasssns 157
SEIVO MOTOFS.....vecccii s 157
Servo Motor and a Potentiometer ... 161
STEPPEE MOTOK ...t e nen 165
Stepper Motor and a Potentiometer ..o 172
Stepper Motor Gear Ratio.........c.ccucerevnnnieninnsnnn s sessessens 175
L1114 RS 176
ComMPONENTS LiST......evveieriererirrerrere e ne s sss s s se s s see e s ssesnessssesnesnens 176

Chapter 9: Rotary Encoder...........ccssummsunmssanmssnssssnsssassssassssnsssassssanssns 177
Rotary Encoder and Stepper Motor.........ccccorvvrernnccrn e 182
3101111 T o 186
Components List ... 187

Chapter 10: Infrared SENSOX .......ccusmsmsmsmsmsmsssssmsmsmssssssssssssssssssssssnsnans 189
Infrared Emitter and SENSOr ... s 195
Infrared Emitter and RECEIVEN ... 197
SUMMAIY . veitetrerere e sere e ses s e sa e e s e sse s s e se s e saesaese e e saesaesae e e e saesaessenennesaess 200
COmMPONENTS LISt ....cccceviiriirricririese e s 201

Chapter 11: Radio Frequency Identification .........ccccusseenrrsssnnnnrsssnnns 203
Display Content of MIFARE Classic 1K and 4K............ccccovenrenrencrnscneseneneenes 205
Mimic RFID @and SECUIE Site .......c.ccevrrererenmrrnsesrsesesese s s sessssessnnes 208



TABLE OF CONTENTS

Master Card Validation ..o 211
Read and Write to ClassiC 1KB Card ............couevrrererenernsesesesesesesessesesseseseenes 213
SUMMANY....ceireerireserese e se s e e e s nse e se e nensenenns 217
COMPONENTS LISt ......ccerrierrriririerrssesesessss s s ssanes 217
Chapter 12: SD Card Module........ccoccemmissssnnnnmsssssnnnmssssssssssssssssnsssssnns 219
Temperature and Light Intensity LOGQing........cccveerrevnnnieniernnnsensessensesessessenees 220
Date and Time LOGQINg ....ccccvveererierrennerersersee e sessesseessesesesssessessesesssessessesnens 226
Logging Weather Station Data ............cccocovvrinnininnncnsn s 228
Increment File Name for Data Logging ........ccccevveenerenerensesenesesenesensesessssesennes 232
Listing Files 0n @n SD Card .........cccuevvrenmrnnmrnsesessesesesssessesessesesssesessssessssessens 234
SUMMANY....ctivierreesiresss e s e e nr s 236
COMPONENTS LISE.....ccevieciriereresirrere s se s s sas e saeses e sse s 236
Chapter 13: Screen DiSplays........coussesssnsssansssnssssnsssassssassssnsssassssanssns 237
TFT LCD SCIEN......ocvctrteeeccse sttt 237
Displaying Images from an SD Card ..........ccccovvvnvrininnnsnnnie s 242
Screen, Servo Motor, and Ultrasonic Distance Sensor..........cccocoveererenerensenens 243
OLED DiSPIAY.....crvrererrererreeressessssesessssessssesssssssssssesssssssssssssssnssssssssssssssssnssssssssnns 249
TOUCKH SCIBEN ...ttt 252
SUMMAIY.c e ititrirere s rse e s s se s s s a e e s e s s sae e e e s aesaesae e s e e aesae e e e nannaees 258
CoMPONENTS LiST...ccveiveceriererirrerrere s s s s s sre e s s sas e s ssesnessssessesnens 259
Chapter 14: Sensing ColOrs ......ccccuuseenressssssnsssssssnssssssssnssssssssnsssssssnns 261
Red Green Blue (RGB) LED ........cccccvrinnnnrncns s 262
565 COI0r FOrMAL ........coveeeerircreree e 264
Color-Recognition SENSOF .......c.cucceererernsesrnsesesesesrsse s sessesessssesessssenns 267
SUMMANY ...ttt e e r e e np e 275
ComPONENtS LISt ......covivierererirrere s s s ss e saesnens 275

vii



TABLE OF CONTENTS

Chapter 15: CAmMera.......cccrrrssssmnnmrsssssnnsmssssssssesssssnnsssssssnssssssssnnnssssnnns 277
Camera Image Capture SEtUP .......cccecrrcvrccrcsr e 281
Capturing Camera IMAJES .......cccuvrirnrniniensnsse s s ssessens 285
ES 10T 111 T o R 288
Components List ... e 288

Chapter 16: Bluetooth Communication..........cusseemmmnnnnnssssssssssssnnnnns 289
Bluetooth Terminal HC-05 APP ...ccccvereverreriererissessesersesessesessessssessessesessessessees 292
ArduDroid APP ....evceeiererersrr e e 295
Message Scrolling with MAX7219 Dot Matrix Module.......c.ccccocvvverinierenencrnnnes 300
MAX7219 and Bluetooth Terminal HC-05 ApPP.....cccocvivrnrnininnnsenseneses e 302
Message Speed and Potentiometer ............ccoveenveneresernsesenneses e 306
MAX7219 and ArduDroid APP.....ccccvrerennnnieniens s sse s 307
SUMMAIY.c.viitiirere s s s a e e e e e s b b e e s s R sae e e e e aenne s 310
ComMPONENES LiST.....vevveceriererierirrere s ne s rss s s e s e s see e s ssesnessssesnesnens 310

Chapter 17: Wireless Communication ........ccccuusemmnmsssssnnsssssssnsssssssnns 311
TransSmit OF RECEIVE .......covvueereecrircrereer s 315
Transmit and RECEIVE.........cccrveeerrrcreree e 317
ES 10T 111 T o R 322
Components LiSt ... 323

Chapter 18: Build Arduino .......ccccvusssemnsmssssssnnssssssnnssssssssssssssssssssssssnns 325
ATMEga328P Pin LAYOUL ......c.ccovvercereresirsere s s sae s s e snesnes 326
Building @an ArdUiNo..........ccocvvenninienne e s 328
Installing the BoOtloader ... s 332
SUMMANY..c..citiiiire e s s b e e b e e R b e e e nne s 336
Components List ... 337

viii



TABLE OF CONTENTS

Chapter 19: Global Navigation Satellite System..........cccevnssnnnrrssanns 339
GNSS Messages on Serial MONItor ..........cccccevevrnrcvnesnie e seens 339
U-DIOX U=CONMEEN ... s 341
Arduing and GNSS.........coerrere e 343
GNSS Data Logging to SD Card........c.ccceeerenerrnsesrmsesesesessssesssesessssessssessssssessenes 357
GNSS and ST7735 SCIEEN........coriimiririrsssse s 360
Displaying GNSS Data........c.ccoevververiererenserserersesessesessssessessessessssessessessssessessenes 368
SUMMAIY .. ueiteirererereesere s reesessersessess e e ssessess e e ssesaesaessesessesaesaessssesaesaessssensessens 369
Components List ... e 369

Chapter 20: Interrupts and Timed Events...........c.cuscmmnsmnsssnnssssnnnnns 37
INTEITUPTES oo 371
TYPES Of INTEITUPT.....e e ———— 376
Additional INterrupt PiNS .....ccccevvvrvnierrsrrere s sessessesnes 379
Interrupts and Rotary ENCOAEN .........cccoeververinne s 380
Timed Events: delay() ....ccocvververrerierierrie s se s sse e saeens 384
Timed Events: MilliS() .....ccovvvvrirennsinrre e 384
Timed EVentS: TIMEIT .....ccoeeereccrrcs s 387
Timer Register Manipulation...........cocuoeereennsesnnesnesessse e sessesesseens 390
SUMMANY ...t e e r e e e npn e 395
ComPONENTS LISt ....cvvvveceriererirririere s s s sss e s snessssesnesnens 395

Chapter 21: Power Saving ......cccovusssssnsmssssssssssssssnssssssssnssssssssnsssssssnns 397
aVI/SIEEP MOTUIE ... e e e 402
LOWPOWEF LIDIArY ....c.eeeeeeeeecee e 405
Power Down and an INfrared SENSOF ..........ccoveernererenernseseseses s 406
SUMMANY....ceirierrresrsese e e e ne e nr e 410
CompOoNeNts LISt ......cccuoviririririniene e s ssesnens 410

ix



TABLE OF CONTENTS

Chapter 22: Sound and Square Waves........cccuusssemssrsssssnssssssssnsssssssnns 411
Piezo Transducer and BUZZer ..o 416
MUSICAI NOTES ... 416
SenSOr aAnNd SOUNG........ccoveoerreereree e e e 420
Generating SQUAre Waves ..........ccvverrrrenmnesesssessseses s sssesessssessenes 425
Square Wave and Servo MOtOr...........ccucvverevnnnsniene s se e ssssessessens 431
SUMMAIY.c.veitetrerere e s e s e e e e e s sae s s e se s e s aesaese e e saesaesee e s e saesae s eensesaess 432
COMPONENTS LiST ...ccveiveieriererirrerrerere s sere s ses e se s sse s s e ssessesessesessesasssssensessens 432

Chapter 23: DC MOtOrS......cccccrrssmmmmsssnmmsssnsmsssnsssssnsesssnsesssssssssnnssssnnsnss 433
Motor Control Set in the SKEtCh.........oeoeeeerreere e 438
MOTOr SPEEU......cccererectrr e ———————— 441
Motor Control with Infrared Remote Control..........ccooecvvcnniesnnesrnsesenenennene 444
Motor Control with Wireless Communication...........c.coovvenennerennnsnssesesesssnnes 445
Motor Control with ACCEIErOMEter ..........cccovrriicrirrr s 452
Motor Control with Photoelectric ENCOder ...........cccovrrnienesenernsnessscseresseenes 457
SUMMANY..c..citiiiire e s s e e s e sr e e R r e e e aenne s 465
Components List ... 465

Chapter 24: Robot Car ........ccuvmmmsmsmsmsmsmsssmsmsmsmsssssssssssssssssssssssssnans 467
PID CONErOIIET ..ottt s 475
Balancing RODOL..........ccccvvriennrirrere e e sr e e 481
Determining PID COETfiCIENTS .....cccveereverrerere s serse s see s sne s 483
(Lo T Tl =TT TP 485
Quaternion MeasUreMEeNTS..........ccocreeerrrererrererese e 489
10T 111 1T SR 496
Components LiSt ... 497



TABLE OF CONTENTS

Chapter 25: Wi-Fi Communication........ccccccmmnssmnnsmsssssnssssssssssssssssnns 499
NOAEMOCU ESPB266 .........ccererrrrrrrrrrrnsrsrsssrereseresesesesesesesssssssssssssssssssssssssssssssnsnees 499
WEMOS DT MiNi ... 502
Wi-Fi @nd WeD SEIVEr ... 504
Wi-Fi @nd HTVIL.......ccoorirsrrere s s ss s s sss s s s snes 510
Wi-Fi and INternet ACCESS ..o 519
SUMMAIY.c.veitetrerere e re e e s s e s e e s e s ssese s e saesaese e e saesaesae e e e saesaessennnesnens 530
COMPONENTS LiST...ccveveeierererirrerrerere s sereseses e sessesre e s e sse e sessesesnesaesessessessens 531

Appendix: Resistor Banding .......cccousssmnmmmssssssnmssssssssssssssssssssssnssnsssss 533
LIDFAIIES ...eeeceeece e 534
Quaternion MeasUreMEeNtS........c.cccrvrernsmrrssesesrese s senns 537
Who’s WhO in EIECIIONICS.....ccovvcerrrerrscnerese s e ss e sessssnsnnnens 541
Sources of Electronic CompPonents.........ccccvcevvvnsnienenensenseness s sessessesessesessens 542

1T = 545



About the Author

Neil Cameron was a research scientist in quantitative genetics at Roslin
Institute (of “Dolly the sheep” fame) with expertise in data analysis and
computer programming. Neil has taught at the University of Edinburgh
and Cornell University. He has a deep interest in electronics and “how
things work,” with a focus on programming the Arduino and its application
on a range of comprehensive projects for everyday electronics, which
inspired him to write this book.

xiii



About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/
developer using Microsoft technologies. He works at BluArancio S.p.A
(www.bluarancio.com) as senior analyst/developer and Microsoft
Dynamics CRM Specialist. He is a Microsoft Certified Solution Developer
for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft
Certified Professional, and a prolific author and technical reviewer.

Over the past ten years, he’s written articles for Italian and international
magazines, and co-authored more than ten books on a variety of
computer topics.


http://www.bluarancio.com/

Preface

Microcontrollers are incorporated in car control systems, domestic
appliances, office machines, mobile phones, medical implants, remote
controls, and the list goes on. The Arduino Uno is a microcontroller board
that can be easily programmed and used to build projects. The objective
of this book is to provide information to use the Arduino Uno in a range
of applications, from blinking an LED to a motion sensor alarm, to route
mapping with a mobile GPS system, to uploading information to the
Internet. Prior knowledge of electronics is not required, as each topic is
described and illustrated with examples using the Arduino Uno.

The book covers a comprehensive range of topics. In Chapters 1-3,
the Arduino Uno and the Arduino programming environment are set
up, and several sensors are described with practical examples to provide
the basis for subsequent projects. Information display with the Arduino
Uno using liquid crystal, LED, and dot matrix displays are described in
Chapters 4-7. Several projects are developed with servo and stepper
motors, infrared control, RFID, and SD card data logging in Chapters 8-12.
Sensing and displaying color is outlined in Chapters 13-14, and recording
images in Chapter 15. Bluetooth, wireless, and Wi-Fi communication
systems are described in Chapters 16, 17 and 25, with practical examples
of message scrolling, servo motor control, and web-based information
display projects, respectively. The Arduino Uno is deconstructed to the
microcontroller for use in a mobile GPS system, with timed events and
power-saving methods in Chapters 18-21. Electronic sound projects are
outlined in Chapter 22. An obstacle-avoiding robot car and a balancing
robot are described in Chapters 23 and 24, with the robot car controlled by
systems described in earlier chapters.

xvii



PREFACE

Projects covered in the book include and extend those in Arduino
Uno starter kits to increase knowledge of microcontrollers in electronic
applications. Many of the projects are practically orientated, such as
information displays, GPS tracking, RFID entry systems, motion detector
alarms, and robots. Building projects helps you understand how many
electronic applications function in everyday life. Examples include flashing
numbers on a screen, a scrolling message in the train station, electronic
tags on items in a shop or books in the library, a desktop weather station,
Bluetooth communication with a mobile phone, digital sound systems,
and an obstacle-avoiding robot vacuum cleaner.

Each example in the book is accompanied by code and a description
of that code, which helps you learn how to program a microcontroller and
a computer, which is a highly valuable skill. The Arduino programming
language is C, which is widely used. Learning to program an Arduino
provides the framework for other computer programming languages.
Throughout the book, schematic diagrams were produced with Fritzing
software (www.fritzing.org), with an emphasis on maximizing the clarity
of component layout and minimizing overlapping connections. The
authors of the libraries used in the book are identified in each chapter,
with library details covered in the appendix. There are several approaches
to structuring sketches, and the approach taken in the book is to declare
variables at the start of the sketch, rather than throughout the sketch.

All the code used in the book is available to download from github.
com/Apress/arduino-applied. The Arduino programming environment
and libraries are constantly being updated, so information on the
consequences of those updates on the content of the book is also available
atgithub.com/Apress/arduino-applied.

Many chapters of the book are stand-alone, so that you can delve
into a section of the book rather than having to start from the beginning,
while several chapters utilize information from earlier chapters to build
a project. You learn how to break down a complex project into smaller

xviii


http://www.fritzing.org/
http://www.﻿github.com/Apress/arduino-applied﻿
http://www.﻿github.com/Apress/arduino-applied﻿
http://www.﻿github.com/Apress/arduino-applied﻿

PREFACE

projects, just as each chapter addresses a different topic, to then be able to
build and enhance the initial project.

If you bought, or are thinking about buying, an Arduino Uno starter
kit that contains a few LEDs, a variety of sensors, with some switches and
resistors, then this book is for you. If you want to build electronics projects
with a microcontroller, then the comprehensive range of topics covered in
the book provides the detailed instructions to get started.

Xix



CHAPTER 1

Introduction

The Arduino Uno provides the framework to learn about electronics, and to
understand and build electronic devices. The Arduino Uno can monitor an
environment with sensors, drive LED message boards, generate sound and
light patterns, take and display digital photos, communicate by Bluetooth

or wirelessly with other electronic devices, communicate by Wi-Fi to the
Internet, and record data on the route, speed, and altitude of a trip with GPS.

Arduino Uno

The Arduino Uno R3 (see Figure 1-1) contains the ATmega328P
microcontroller to carry out programmed instructions and memory

to store data. The Arduino is powered through a DC input or a USB
connection, which is also used to upload instructions and communicate
with a computer or laptop. An ATmegal6U2 chip manages USB (Universal
Serial Bus) to serial communication.

The power pins allow 5V (5 volts) or 3.3V and ground (GND) to
connect other devices. Pins 0 and 1 are for transmitting and receiving
serial data from other devices. Pins 2 to 13 are digital input and output,
which input or output 5V for a digital one or 0V for a digital zero. Several
output pins vary the time that a pin state is 5V to emulate voltages between
0V and 5V. The analog pins, A0 to A5, measure voltages between 0V and
5V and convert analog signals to digital values (ADC). Pins A4 and A5

© Neil Cameron 2019 1
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_1



CHAPTER 1  INTRODUCTION

can also communicate with other devices, as can pins 10 to 13, but using
different communication systems, I2C and SPI respectively, than the

USB connection. Three LEDs (light-emitting diode) indicate power (ON),
transmitting (TX), and receiving (RX), with a fourth LED connected to pin 13.
The Reset button is used to restart the microcontroller.

The functionality of the Arduino Uno enables a comprehensive range
of projects to be developed, which are described throughout the book.
Several of the terms—such as ADC, 12C, and SPI—may mean little to you
just now, but they are explained in the relevant chapters.

Reference voltage
Ground

(SPI) MISO

(SPI) MOSI

14 Digital inputs
PWM pins with ~

(SPI) SCK
(SPI) sS
Interrupt 1
Interrupt 0
Transmit
Receive

| (12C) scL
| (12C) SDA

serial

clock

5V and 3.3V
voltage regulators

DC input
7to 12V

microcontroller

oBsS > ==l
233 g i (5]
Socs ~— o mw
sSxZ3Lon £ et
= 5sbls o OY
2 »b a o =
= 1 = ] =
= m £ o
2 5
Q ® ©
o 5

o

Figure 1-1. Arduino Uno



CHAPTER 1 INTRODUCTION

Breadboards

The solderless breadboard contains columns of connected sockets for
positioning electronic components to create a circuit and for connecting to
the Arduino (see Figure 1-2). The two rows along the length (left to right)
of the breadboard are used to connect to power (red) or ground (blue)
lines in a circuit. Holes in each short column (green) of the breadboard

are connected together, but the columns are not connected, so that two
components each with one “leg” in the same green column are connected
together. The middle area in the breadboard separates the breadboard into
two unconnected halves. Breadboards come in a variety of sizes.

L R A O O A A O O
LR B B B B B B B B R I
LR B IR BN B B B R O N B I B B O
L I I A O O I
LR B O O I O O

L
# ® % e e e e e e e e e e e e e
e

Figure 1-2. Breadboard

The term breadboard originates from radio amateurs attaching
fixing points to a wooden breadboard and then connecting electronic
components to the fixing points.

For example, Figure 1-3 shows a circuit with an LED, a 100€2 resistor,
and a 3V battery. The positive or red terminal of the 3V battery is
connected to the long leg of the LED, as the relevant component legs are
in the same short column. Likewise, the short leg of the LED is connected
to the “top” end of the 100Q resistor, but not to the “bottom” end of the



CHAPTER 1  INTRODUCTION

resistor due to the separating middle area of the breadboard. To complete
the circuit, a black wire connects the negative or black terminal of the 3V
battery to the “bottom” end of the resistor.

resistor
. 100Q

fritzing

Figure 1-3. LED and resistor circuit

Arduino IDE Software

The Arduino IDE (interactive development environment) software
is downloaded from www.arduino.cc/en/Main/Software, with the
downloaded arduino-version number-windows.exe file saved to the
desktop. The .exe file is double-clicked to start the installation.

The Arduino IDE program files are stored in C: » Program Files (x86)
» Arduino, which includes example sketches located in C: » Program
Files (x86) » Arduino » examples. Each example sketch is accompanied
by a text file outlining the objective of the sketch, the breadboard layout of
the components, and a circuit diagram.

The Arduino IDE is used to write, compile, and upload files to the
microcontroller. A file containing Arduino code is called a sketch. Within the
Arduino IDE, clicking one of the five IDE symbols

provides quick access to compile a sketch, to compile and upload a sketch,
to open a blank sketch, to open an existing sketch from a list of all sketches,


http://www.arduino.cc/en/Main/Software

CHAPTER 1 INTRODUCTION

and to save the current sketch. The Open an existing sketch option 4|

does not scroll the complete list of sketches, so use File » Sketchbook
instead. Some useful options from the drop-down menu are given in
Table 1-1.

Table 1-1. Drop-down Menu Options of the Arduino IDE

Options Description

File » Open Recent Alist of recently accessed sketches
File » Examples Arduino IDE built-in sketches
Edit » Find Find and replace text in a sketch
Sketch » Include Library Arduino and contributed libraries
Tools » Serial Monitor Displays serial data to serial monitor
Tools » Serial Plotter Graphic display of serial data

Tools » Board Description of the microcontroller

for example Arduino/Genuino Uno

Tools » Port Detail of serial port,

for example COM3 Arduino/Genuino Uno

File » Open Recent List of recently accessed sketches

Arduino IDE Sketch

An Arduino IDE sketch consists of three parts: variable definition, the
void setup(), and the void loop() functions. The first part includes
defining which Arduino pins are connected to sensors, LEDs, or devices,
and declaring the values of variables. For example, the int LEDpin = 9
instruction defines a variable, named LEDpin, with the integer value of 9.
The void setup() function implements definitions in the first part of the



CHAPTER 1  INTRODUCTION

sketch and only runs once. For example, the pinMode (LEDpin, OUTPUT)
instruction defines the Arduino pin 9 as an output pin, rather than an
input pin by default, since LEDpin has the value 9.

The void loop() function runs continuously and implements the
sketch instructions. For example, a sketch may turn on and off an LED at
given times.

Declaring variables in the first part of the sketch makes it easier to
update the variable once at the start of the sketch, rather than having to
check through the sketch and update variables throughout the sketch.

Comments are prefaced by //, such as // Set LED to pin 9, and are
not implemented by the microcontroller. With a couple of exceptions, all
instruction lines end with a semicolon.

Run the Blink Sketch

Follow these steps to run the blink sketch.

1. Connectthe Arduino to a computer or laptop with
the USB-to-serial cable.

2. In Arduino IDE, select File » Examples » 01. Basics » Blink.

3. Click the Compile and Upload, ., button.

The built-in LED on the Arduino will now flash every second. Welcome
to Arduino!

The REEEERNEERILERERBEIEE error message indicates that the serial

port should be updated. Select Tools » Port and choose the appropriate
port (for example, COM3 or COM4) for the Arduino. Go to step 3.

The error message FUEEREEL I ERIEER L ERGERT SN indicates

that the description of the microcontroller should be updated. Select
Tools » Board and choose the relevant board (for example, Arduino/
Genuino Uno). Go to step 3.



CHAPTER 1 INTRODUCTION

Electricity Explained

An understanding of electricity is helpful before progressing further.

All materials are made of atoms, which consist of protons, neutrons,
and electrons. Electrons have a negative charge and can move from one
atom to another. Electricity is the movement of electrons between atoms,
or rather the flow of an electrical charge.

A simple example of an electrical charge is rubbing a cloth over an
inflated balloon. Electrons are rubbed off the cloth and onto the balloon,
making the balloon negatively charged. If the balloon is now placed near
an object, then the balloon “sticks” to the object. The negative charge of
the balloon repels the negatively charged electrons of the object, leaving
an excess of positive charge next to the balloon. Since positive and
negative charges attract, then the balloon is attracted to the object.

The effect of moving an electric charge from one object to another has
been known for centuries. More than two-and-a-half-thousand years ago,
the Greeks knew that rubbed amber, which is fossilized tree resin, could
attract light objects, such as hair. The word electric derives from the Greek
word for amber, elektron.

A discharging battery is a source of electrons, and the electrons
move from the negative terminal, the anode, to the positive terminal, the
cathode. The words anode and cathode are derived from the Greek words
anodos and kathodos, so cathode is abbreviated as K. Although electrons
flow from anode to cathode, the conventional current flows from cathode
to anode, or from positive to negative.

Describing electricity uses the terms charge, voltage, current, and
resistance. The analogy of water flowing from a reservoir through a pipe
can be used to envisage some of the electrical terms (see Table 1-2).



CHAPTER 1  INTRODUCTION

Table 1-2. Electrical Parameter and Water Analogy

Electrical Parameter Water Analogy

Electrical charge (coulombs, C) Amount of water in the reservoir

Voltage (volts, /) Water pressure at the reservoir end of the pipe
Current (amperes or amps, A) Rate of water flow
Resistance (ohms, ) Inverse of pipe width

(narrow pipe = high resistance)

The relationship between voltage (V), current (I), and resistance (R) is
V =1x R, which is Ohm’s law.

Charge is measured in amp-hours (Ah), which is the charge
transferred by a current of one amp for one hour. The length of time that a
battery, such as a nickel metal hydride (NiMH) AA battery with a charge of
2400mAh, can supply a given current depends on the size of the current.
For example, with discharge rates of 2400, 4800, or 7200mAh, the battery
would last 60, 30, or 20 minutes.

Electrical power, measured in watts (W), is the rate that energy is
transferred in unit time, equal to the product of voltage and current.

Revise the Blink Sketch

The blink sketch can be changed to make a separate

‘ LED blink rather than the LED on the Arduino. The
— Arduino supplies a regulated 5V output from the pin

CATHODE marked 5V, but a resistor is required to ensure that the
current does not exceed the LED’s maximum permitted

current of 20mA. Without the resistor, the high current

would damage the LED.
Using Ohm’s law, which states voltage equals the product of current

and resistance, or V=1 x R, the value of the resistor (R) can be determined,



CHAPTER 1 INTRODUCTION

given the known voltage (V) and current (I). The forward voltage drop
across the LED is 2V, which is the minimum voltage required to turn on the
LED. With a 5V output from the Arduino, there is 3V = 5V - 2V across the
resistor (see Figure 1-4). If the current through the resistor and the LED is
to be at most 20mA, then from Ohm’s law, the resistor value (R = V/I) =
3/0.02 = 15092, which is equal to the voltage across the resistor divided

by the current through the resistor. A resistor of at least 150Q2 would
protect the LED from an excessively high current and the widely available
220Q resistor can be used. Resistors are color-coded (see Appendix) to
identify the resistance, but checking the resistance with a multimeter is
straightforward. Resistors are connected either way around in a circuit.

The power through the resistor should be checked to ensure that it
is not greater than the maximum value for the resistor. In the example,
the maximum power rating of the resistor is 250mW. With 3V across the
resistor and 20mA maximum current, then power =V x I = 60mW, which is
well below the maximum value.

An LED is a diode, which allows current to pass in one direction only.
The long leg of the LED is the anode and the flat side of the LED is on the
cathode side. LEDs contain semiconductor material, which determines
the wavelength of light emitted: red, green, blue, or yellow. The forward
voltage drop of red, yellow, and green LEDs is lower than for blue and
white LEDs: 2.0V and 2.9V, respectively.

If an LED and resistor were connected as in the left-hand side of
Figure 1-4, then the LED would stay on continuously. If the LED was
connected to an Arduino pin, then changing the pin status from 5V (HIGH)
to OV (LOW) to HIGH repeatedly would turn on and off the LED. The
revised circuit in the right-hand side of Figure 1-4 has the LED anode
connected to pin 11 of the Arduino. Switching the LED on and offis a
digital or binary operation, 0 or 1, requiring a digitalWrite instruction to
pin 11 to enable or disable a power supply to the LED. Connections for the
two examples in Figure 1-4 are given in Table 1-3.



CHAPTER 1  INTRODUCTION

LED resistor R R | | N
2200

------------------------------
------------------------------

fritzing

Figure 1-4. Blink an LED

Table 1-3. Connections for LED

Component Figure 1-4 left-hand side Figure 1-4 right-hand side

Gonnect to and to CGonnect to and to

LED long leg Arduino 5V Arduino pin 11
LED shortleg 220 resistor  Arduino GND 220 resistor ~ Arduino GND

The revised blink sketch is shown in Listing 1-1. The LED is connected
to Arduino pin 11. In the void setup() function, the Arduino pin defined
by the LEDpin variable is defined as an OUTPUT pin, rather than an INPUT
pin that would be used for input, such as measuring a voltage. In the
void loop() function, the state of Arduino pin 11 is repeatedly changed
from HIGH to LOW and LOW to HIGH at one-second intervals, which
corresponds to changing the output voltage on the pin from 5V to 0V, and
so the LED turns on and off.

10



CHAPTER 1 INTRODUCTION

Listing 1-1. Sketch to Blink an LED

int LEDpin = 11; // define LEDpin with integer value 11

void setup() // setup function runs once

{
pinMode(LEDpin, OUTPUT); // define LEDpin as output

}

void loop() // loop function runs continuously

{
digitallrite(LEDpin, HICH); //setpinstate HIGH to turn LED on
delay(1000); // wait for a second = 1000ms
digitalWrite(LEDpin, LOW); //setpin state LOW to turn LED off
delay(1000);

}

Instructions within the void setup() and void loop() functions are
included in curly brackets, indicating the start and end of the function,
with the instructions indented to make the sketch easier to interpret.
Sketches must include both the void setup() and void loop() functions,
even if a function contains no instructions.

Comments are useful to interpret a sketch. A comment is text after the
// characters. Several lines of comments can be included when bracketed
by /* and */, such as

/* this is the first line of comment
this is the second line of comment
this is the last line of comment */

The schematic format has red and black wires for VCC (positive
voltage) and GND (ground), with yellow, blue, or green wires connecting
electronic components to Arduino pins. In general, green is used for an
input signal and yellow for an Arduino output signal.

11



CHAPTER 1  INTRODUCTION

Pulse Width Modulation

Several Arduino pins, those marked with ~ support Pulse Width
Modulation (PWM), which replaces a constant HIGH signal with a square
wave, pulsing HIGH and LOW, and the pulse width can be modified (see
Figure 1-5). The impact of PWM on an LED is to change the perceived
continuous brightness of an LED, even though the LED is being turned on
and off repeatedly.

PWM is also used to control the speed of motors and to generate
sound. The PWM frequency on Arduino pins 5 and 6 is 976 cycles per
second (Hertz or Hz), so the interval between pulses, indicated by the
green dotted lines in Figure 1-5, is 1.024ms. Most people cannot detect
flicker between images displayed above 400Hz, so an LED turned on and
off at 976Hz appears to be constantly on.

The square wave is generated by the analoghrite(pin, value)
instruction with a duty cycle of (value/255), so a 0% or 100% duty cycle
corresponds to a value of 0 or 255. For example, in Figure 1-5, with a 5V
supply, the PWM duty cycles of 0%, 25%, 50%, 75%, and 100% can be
broadly thought of as supplying average voltages of 0V, 1.25V, 2.5V, 3.75V,
and 5V, respectively. PWM is one mechanism for supplying “analog”
signals from a “digital” OV or 5V signal, and it is used in many projects
throughout the book.

12



Voltage (V)

CHAPTER 1 INTRODUCTION

100% duty cycle : analogWrite(255)

75% dutjy cycle : ainalogWritfe(lSJZ)

i

i

i

50% duf;y cycle : aénalogWritie(lZS)

25% duftv cycle :

:

:

énalogerte(Gﬂf)

:

1

0% dufty cycle : énalogerte(O)

Figure 1-5. Pulse width modulation

The sketch (see Listing 1-2) uses PWM to change the brightness of an
LED with the rate of change controlled by the increm and time variables.

Listing 1-2. LED Brightness and PWM

int LEDpin = 11;
int bright = o;
int increm = 5;
int time = 25;

void setup()
{

pinMode(LEDpin, OUTPUT);

}

// define LED pin

// initial value for LED brightness
// incremental change in PWM frequency

// define time period between changes

// setup function runs once

// LED pin as output

13



CHAPTER 1  INTRODUCTION

void loop() // loop function runs continuously

{
analoghrite(LEDpin, bright); //setLED brightness with PWM
delay(time); // wait for the time period
bright = bright + increm; // increment LED brightness
if(bright <=0 || bright >= 255) increm = - increm;

} // reverse increment when brightness = 0 or 255

The symbols | | denote OR, so the if(bright <= 0 || bright »>= 255)
increm = -increminstruction is equivalent to “if the bright variable is
less than or equal to zero, or greater than or equal to 255, then change the
sign of the increm variable.” The OR instruction reverses the increasing
brightness to decreasing brightness, and vice versa.

Opening and Saving Sketches

To open a saved sketch, within the Arduino IDE, select File » Open.
Choose the folder name containing the sketch, click Open, select the
sketch, and click Open. Alternatively, select File » Open Recent. A list of
recently opened sketches is displayed, then click the required sketch.

The default location for saving sketches is determined by selecting
File » Preferences in the Arduino IDE. To save a sketch, select File » Save As,
which opens the default sketches folder, then choose a file name for the
sketch and click Save. The file name must not contain spaces, so use an
underscore instead, such as in file_name. When a sketch is saved, a folder
is automatically generated to contain the sketch.

When a sketch has been edited in the Arduino IDE, a § symbol follows
the sketch name to indicate that changes have been made since the sketch
was last saved. To save an existing sketch, select File » Save. If changes
have been made to a sketch, then after saving the sketch, the § symbol
disappears.

14



CHAPTER 1 INTRODUCTION

Summary

The Arduino Uno and the Arduino IDE programming environment were
described. An introduction to programming the Arduino enabled a sketch
to control an LED turning on and off. The blink sketch was changed to
vary the brightness of the LED using Pulse Width Modulation. A summary
of electricity, including Ohm’s Law, helped you understand how an LED
functions and that an LED requires a resistor to reduce the current.

Components List

e Arduino Uno and breadboard
e LED

e Resistor: 220Q2

15



CHAPTER 2

Switches

Switches are used to turn devices on or off, such as a room light or an
electrical appliance, and when sending a signal, such as pressing a
particular key on a keyboard. Switches can also be used to control devices;
a device is on when the switch is initially pressed or while the switch is
pressed. The metal contacts of switches can bounce when the switch is
pressed, which could repeatedly turn a device on and off again. Switch
bouncing can be controlled using software or by hardware, which is called
debouncing a switch.

Tactile Switch

A switch can be connected to an Arduino pin to turn an LED
on or off. When the switch is closed, the digital pin is

connected to 5V and the pin state is HIGH. When the switch
is open, the 10kQ pull-down resistor permits a small current

to flow between the digital pin and GND, so the pin state is
pulled down to LOW (see Figure 2-1).

© Neil Cameron 2019 17
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_2



CHAPTER2  SWITCHES

Ly

GND| oY

(Eradd

ouInpay

T
i H

switch

resistor

Figure 2-1. Pull-down resistor

If the switch and resistor are reversed, relative to the digital pin, then
when the switch is open, the digital pin is connected to 5V, through the 10kQ
pull-up resistor, and the pin state is HIGH. Use of a pull-down or a pull-up
resistor depends on whether the pin state is to be LOW or HIGH when the
switch is open. If a pull-down or pull-up resistor was not included, then
when the switch is open the digital pin would not be connected to GND or to
5V, so the pin state would be undefined. Incorporation of a switch with the

pull-down resistor is shown in Figure 2-2.

18



LED resistor
2209

switch resistor
10k

CHAPTER2  SWITCHES

D e ew

" e s v 8 v 8 ¢ s v NN
LRI

b~
LR | T

" e e
U
e
" e
" .

fritzing

Figure 2-2. LED switch with pull-down resistor

The switch module consists of two pairs of connected pins, with the

switch pins close together on the underside of the switch. Connections for

Figure 2-2 are given in Table 2-1.

Table 2-1. Connections for LED Switch with Pull-Down Resistor

Component Connect to and to
Switch left Arduino 5V

Switch right Arduino pin 8

Switch right 10kQ resistor Arduino GND
LED long leg Arduino pin 4

LED short leg 220Q resistor Arduino GND

19



CHAPTER2  SWITCHES

Listing 2-1 turns an LED on while the switch is pressed and off while
the switch is not pressed. The digitalRead(pin number) instruction reads
the state of the pin, HIGH or LOW.

Listing 2-1. LED Switch

int switchPin = 8; // define switch pin
int LEDpin = 4; // define LED pin
int reading; // define reading as integer

void setup()

{
pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()
{

reading = digitalRead(switchPin); //read switch pin
digitalWrite(LEDpin, reading); // turn LED on if switch is HIGH
} // turn LED off if switch is LOW

It would be more useful to turn the LED on or off only when the switch
is pressed (see Listing 2-2). The states of the switch and LED are stored
as variables, switchState and LEDState, respectively. When the switch is
initially pressed, the switch state changes from LOW to HIGH and the
state of the LED is updated from either LOW (off) to HIGH (on) or from
HIGH to LOW. The switchState variable is also updated when the switch is
initially pressed, but if the switch is continuously pressed, then the switch
state does not change. Releasing the switch changes the switch state from
HIGH to LOW and the switchState variable is updated, but there is no
change in the LED state. The void loop() function continues to read the
switch pin.

20



CHAPTER 2  SWITCHES

Listing 2-2. LED Switch Only When Pressed

int switchPin = 8; // define switch pin

int LEDpin = 4; // define LED pin

int reading; // define reading as an integer
int switchState = LOW; // set switch state to LOW

int LEDState = LOW; // set LED state to LOW

void setup()

{
pinMode(LEDpin, OUTPUT); // LED pin as output
}
void loop()
{
reading = digitalRead(switchPin); //read switch pin
if(reading != switchState) // if switch state has changed
{ // if switch pressed, change LED state

if(reading == HICH &8 switchState == LOW) LEDState = !LEDState;
digitalWrite(LEDpin, LEDState); //turn LED on or off
switchState = reading; // update switch state

}
}

Comparison Operators

Alogical AND is indicated with the && symbol, such as if(X>Y && A==HIGH),
which indicates that if X is greater than Y and A is equal to HIGH, then the
outcome is true.

Alogical OR is indicated with the || symbol, such as if (X>Y || A==HIGH),
which indicates that if X is greater than Y or A is equal to HIGH, then the
outcome is true.

21



CHAPTER2  SWITCHES

The double equals sign (==) denotes “is equal to” in a comparison, as
in if(reading == HIGH), which means “if reading is equal to HIGH”.

I= denotes “is not equal to” in a comparison as in if(reading !=
switchState), which means “if reading is not equal to switchState’.

The exclamation mark ! denotes “the opposite value’, as in LEDState =
I LEDState, which means “change LEDstate to its opposite value’, which is
from HIGH to LOW or LOW to HIGH.

The equivalent of X = X + 1 is X++ and similarly, X- - is equivalent to
X=X-1

The calculation y%x is y modulus x, or the remainder when integer y is
divided by integer x.

Debouncing a Switch

When a switch is pressed, the springy nature of the metal used in the
contact points can cause the contact points to touch several times; in
other words, to bounce, before making a permanent contact. The Arduino
clock speed of 16MHz equates to 16 million operations per second, so a
bouncing switch contact appears to the microcontroller as having closed
and opened several times when the switch is pressed. For example, when
an LED is controlled by a switch, sometimes the LED does not turn on

or off when the switch is pressed. The switch can be debounced by two
software methods or by a hardware solution.

One software method initiates a delay, following a change in the switch
state, and then rereads the switch state after the delay, defined by the
delay(milliseconds) instruction. If the delay is too short, then the switch
may still be bouncing at the end of the delay. The void loop() function in
Listing 2-3 includes the debounce delay, rereads the switch pin and compares
the new switch state with the switch state read before the delay. In Listing 2-3,
the new instructions compared to Listing 2-2 are highlighted in bold.

22



CHAPTER 2  SWITCHES

Listing 2-3. LED Switch with Debounce Time

void loop()

{
reading = digitalRead(switchPin); //read switch pin
if(reading != switchState) // if state of switch has changed
{
delay(50); // debounce time of 50ms
reading = digitalRead(switchPin); //read switch pin again
if(reading != switchState) // compare switch state again
{
if (reading == HICH 8& switchState == LOW) LEDState =!LEDState;
digitalWrite(LEDpin, LEDState);
switchState = reading;
}
}
}

A second software method is to continue delaying until there is no
longer a change in the switch state at the end of the delay or debounce time.
The debounce time is essentially the time that the switch must be held in
a constant state before the LED is turned on or off. The state of the switch
has to be stored at three times: before the switch was pressed (oldSwitch),
when the switch was pressed during the debounce time (switchState) and
when the switch was last pressed (reading). The millis () function counts
the number of milliseconds that the sketch has been running and is used
to store the time when the switch was pressed. The state of the switch is
continuously read, until the switch state is the same for longer than the
debounce time, at which time the LED can be turned on or off. The number
of milliseconds may be greater than the upper limit of an integer number
(2"-1)ms or 33 seconds, so the time variable is defined as an unsigned long
with maximum value of (2°2-1)ms or 50 days.

23



CHAPTER 2  SWITCHES

In Listing 2-4, lastSwitch refers to the time the switch was last pressed

during the debounce time and the changes relative to the non-debounced
sketch, Listing 2-2, are highlighted in bold.

Listing 2-4. Debounced LED Switch with Continued Delay

int switchPin = 8;

int LEDpin = 4;

int reading;

int switchState = LOW;
int LEDState = LOW;
unsigned long switchTime;
int lastSwitch = LOW;

int debounceTime = 50;

void setup()

{
pinMode(LEDpin, OUTPUT);

}

void loop()
{

// define switch pin

// define LED pin

// define reading as an integer

// set switch state to LOW

// set LED state to LOW

// define time as unsigned long

// setlast switch press in debounce time

// define debounce time in ms

// LED pin as output

reading = digitalRead(switchPin); //read switch pin

if(reading != lastSwitch)

{
switchTime = millis();
lastSwitch = reading;

}

// if reading different from last reading

// time switch state change in debounce time
// update last switch state
// is switch state the same for required time

if((millis() - switchTime) » debounceTime)

{

24



CHAPTER 2  SWITCHES

if(reading !=switchState)

{
if (reading == HIGH 8& switchState == LOW) LEDState =!LEDState;

digitalWrite(LEDpin, LEDState);
switchState = reading;

}

When the outcome of an if() instruction cannot be included on the
same line as the if() instruction, then the outcome of the if() instruction is
contained in curly brackets, just as with the void loop() function. Indenting
of instructions within an if() instruction makes the sketch easier to interpret.

Hardware Switch Debounce

g The hardware solution is to include a capacitor across the
% switch (see Figure 2-3). The capacitor charges while the
camog switch is not pressed. When the switch is pressed, the

NNODE

capacitor discharges and the switch signal to the Arduino is
HIGH. While the switch bounces, the capacitor maintains the switch signal
at HIGH. With the hardware solution, there is no need for the software
debouncing sketch. One resistor-capacitor combination is a 10k<2 pull-
down resistor and 10pF capacitor.

25



CHAPTER2  SWITCHES

T:G()

remm  Arduira

capacitor eewswe

10|JF . EEEEE ]

LED resistor {7 3 7 :"....”::::
220Q “
switch resistor [N RUu NIl SNt

10 CRE R B I I I LI
LRI B A R U
LR B B B I A LR

fritzing
Figure 2-3. LED switch and capacitor

The rate, RC, at which a capacitor charges or discharges depends on
the resistance (R) of the resistor and the capacitance (C) of the capacitor.
The voltage across the capacitor after t seconds of charging is V(1 — e Vk¢),
where Vis the supply voltage, and after ¢ seconds of discharging the
voltage across the capacitor is V(e ¢). The higher the RC value, the
longer the debounce delay. After the initial switch press and the capacitor
discharge, the capacitor has recharged to 50% of capacity and the switch
signal is again HIGH after a debounce delay of RC x In(2) seconds. The
debounce delay time can be expressed as 0.693 x RC or RC/1.44 seconds.

With the resistor-capacitor combination of a 10kQ2 resistor and a 10pF
capacitor, the debounce delay is 69ms. There are many resistor-capacitor
combinations that achieve a given debounce delay lasting RC x In(2)
seconds, but a large resistor should be used to minimize the current through
the resistor.

26



CHAPTER 2  SWITCHES

Electrolytic capacitors are polarized and the anode must be at a higher
voltage than the cathode. The cathode has a “-” marking and a colored
strip on the side of the capacitor. The long leg of an electrolytic capacitor is
the anode or positive leg (see Table 2-2).

Table 2-2. Connections for Figure 2-3

Component Connect to and to
Switch left Arduino 5V

Switch right Arduino pin 8

Switch right 10k< resistor Arduino GND
Capacitor negative Switch right

Capacitor positive Switch left

LED long leg Arduino pin 4

LED short leg 220 resistor Arduino GND

Ball Switch

A ball switch contains a metallic ball that joins two contact
~ points whenever the switch reaches a certain angle, which

can be about 70°, and the ball rolls onto the contact points. A
tilt switch is similar to a ball switch, except that a drop of mercury rolls to join
the contact points rather than a ball.

The layout of the ball switch circuit (see Figure 2-4) is identical to the
tactile switch circuit (see Figure 2-2), but the sketch (see Listing 2-5) contains
an if elseinstruction to turn the LED on or off. The if else instruction is
more efficient than two if() instructions and is used when there is more than
one condition, each with a different outcome. In the ball switch sketch, if the
reading is LOW, then the LED is turned on; otherwise, the LED is turned off.

27



CHAPTER2  SWITCHES

= OQON

rxmm Arduira’

LED resistor ::}ﬂ\'f‘.‘f'."::::
220Q

LRI I I " e e

SW|tChreSi5t0r LI R B O U
10k§2

" e e s e e e e e " e e
LI I T I O e
LRI B I " .

fritzing

Figure 2-4. LED and ball switch

Listing 2-5. LED and Ball Switch

int switchPin = 8; // define switch pin
int LEDpin = 4; // define LED pin
int reading;

void setup()

{
pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()
{

reading = digitalRead(switchPin); //read switch pin

28



CHAPTER 2  SWITCHES

if(reading == LOW) digitalWrite (LEDpin, HIGH); //ball switch tips

// over, led on

else digitalWrite(LEDpin, LOW); //ball switch not tipped over, led off

}

Summary

The chapter described how to program the Arduino so that a switch

could control an LED. The bounce effect of a switch was described and

the switch was debounced using two software solutions and a hardware

solution with a resistor and a capacitor. The range of programming

instructions was extended to enable the programming of more complex

sketches.

Components List

Arduino Uno and breadboard
LED

Resistors: 2202 and 10kQ
Capacitor: 10pF

Switches: tactile and ball

29



CHAPTER 3

Sensors

Sensors can be connected to the Arduino to measure aspects of the
environment with sensor information displayed on the serial monitor or
on the serial plotter. The Arduino can perform an instruction depending
on the sensor signal being above or below a given threshold, such as
turning on a light when a room is dark. This chapter describes several
sensors with accompanying sketches to demonstrate uses of the sensors.
In subsequent chapters, projects include one or more sensors, so it is
useful to have all the sensors described in one chapter.

Temperature Sensor

’ The LM35DZ is a precision temperature sensor with an
operating temperature range of 0°C to 100°C that outputs 10mV

ouT,

oo for every degree Celsius increase in temperature. The maximum
' output voltage of the LM35DZ sensor is 100 x 10mV, or one volt.
The Arduino analog-to-digital conversion (ADC) converts a voltage to a
digital value between 0 and 1023. When the default ADC maximum voltage
of 5V is equated to a value of 1023, the range of output voltages from the
LM35DZ sensor has an analog equivalent of 0 to 205 (= 1023/5). If the ADC
maximum voltage is set to 1.1V rather than 5V, then the output voltages
from the LM35DZ sensor map to an analog range of 0 to 930 (= 1023/1.1),

© Neil Cameron 2019 31

N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_3



CHAPTER 3  SENSORS

providing greater resolution for the temperature sensor. For example, a
temperature increase of 1°C corresponds to an increased analog reading of
9 rather than only 2, with ADC maximum voltages of 1.1V and 5V,
respectively. The ADC voltage can be reduced from 5V to 1.1V with the
analogReference(INTERNAL) instruction.

The Arduino has three analog reference values:

o analogReference(DEFAULT) equates 5V to 1023 = 21°-1

o analogReference(INTERNAL) equates 1.1V to 1023

o analogReference(EXTERNAL) equates 3.3V to 1023 when
the 3.3V pin is connected to
the AREF pin

After setting the ADC reference voltage to 1.1V, the temperature
in degrees Celsius is the temperature sensor’s reading multiplied by
110.0/1023. The reading is divided by 1023 and multiplied by 1100 to
convert the reading to mV, and then divided by 10 to convert mV to °C. The
LM35DZ temperature sensor must be connected correctly, as in Figure 3-1,
with the right-hand side of the flat side connected to 5V; otherwise, the
LM35DZ temperature sensor rapidly overheats. The temperature sensor’s
output pin is connected to one of the Arduino’s six analog input pins,
marked AO to A5 (see Table 3-1).

32



CHAPTER 3  SENSORS

LA B B
" s e e 0.
LI O

U I
L A

‘LM35DZ

LRI Y
TR
LR A
R
LR Y
" s e s

v

fritzing

Figure 3-1. Temperature sensor

Table 3-1. Connections for Temperature Sensor

Component Connect to
LM35DZ GND Arduino GND
LM35Dz OUT Arduino pin A0
LM35Dz Vce Arduino 5V

The LM35DZ temperature reading can be displayed graphically using
the Arduino IDE serial plotter by selecting Tools » Serial Plotter. The
communication speed between the Arduino and the serial plotter can be
set to 9600 baud (see Figure 3-2). The serial plotter constantly updates the
minimum and maximum values of Y axis. To prevent the updating, the
minimum and maximum values are defined and then combined with the
sensor reading into a string, with the three variables—minimum, sensor
value, and maximum—plotted simultaneously (see Listing 3-1).

33



CHAPTER 3  SENSORS

@ COM3 (Arduino/Genuing Ung) - (]

27.5"

25.0 1

=2:8

20.0 mm

0.0 t T 1 f
100 200 300 400
Be00baud ] v

Figure 3-2. Serial plotter with temperature
Listing 3-1. Temperature Sensor
int tempPin = Ao; // define LM35DZ signal on analog pin A0
int min =20; // define minimum plot value
int max = 30; // define maximum plot value
int reading; // define reading as an integer
float temp; // define temp as a real number

void setup()
{

Serial.begin(9600); // define Serial output baud rate
analogReference(INTERNAL); //set ADC voltage to 1.1V rather than 5V

}

void loop()
{

reading = analogRead(tempPin);  //read temperature sensor pin
temp = (reading * 110.0)/1023; // convertreading to temperature
// convert minimum, temperature and maximum to a string

34




CHAPTER 3  SENSORS

String axis = String(min) +" "+ String(temp) +
Serial.println(axis); // update plot
delay(10); // delay 10ms between readings

}

The temp = (reading * 110.0)/1023 instruction returns a real number

+ String(max);

for femp when there is a real number in the calculation. If all numbers in the
calculation are integers, then an integer value is returned, even though femp is
defined as a real number. For example, a reading of 500 produces temp values
of 53.76 and 53 given the instructions temp = (reading * 110.0)/1023 and
temp = (reading * 110)/1023, respectively.

Variables

Variables are defined as integer, real, or text. Integers are stored as powers
of 2. For example, 13 = (1 x 2%) + (1 x 22) + (0 x 2!) + (1 x 2°), as 2° = 1, so the
4-bit binary representation of 13 is B1101.

A Boolean variable, bool, takes the value 0 or 1, true or false, HIGH or
LOW, and only requires one bit of memory (see Table 3-2).

A byte stores an integer between 0 and 255. A character, char, is stored
as an integer, with values from -128 to 127, with each character allocated
an ASCII (American Standard Code for Information Interchange) value,
such as the letter A with value 65.

An integer, int, has maximum value 2'°-1 and a long integer, long, has
maximum value 23'-1, but requires 4 bytes of memory.

35



CHAPTER 3  SENSORS

Table 3-2. Variable Types and Their Properties

name Power Storage UpperValue Centered Lower Limit Upper Limit

of 2 On Zero
bool 1 bit 1 0 1
byte 8 1 byte 255 char -128 127
unsigned 16 2 bytes 65535 int -32768 32767
int
unsigned 32 Adbytes  4,294,967,295 long -2,147,483,648 2,147,483,647
long

Real numbers, float, require 4 bytes of storage, which is the same as
for along integer, but the maximum stored value of a real number is
3.403 x 10%, as real numbers are converted into a fraction part multiplied
by a power of two. Real numbers have only 6 to 7 decimal digits of
precision, which is the total number of digits, not the number of digits to
the right of the decimal point. Multiplying a real number by an integer
value results in an integer, but if a value with a decimal point is included,
then the result is a real number. For example, if X is a real number, then 2*X
is an integer, but 2.0*X is a real number.

Variables can be defined using the C program language and the uint
format (see Table 3-3).

Table 3-3. Variable Types and Definition

Name bits upper value
unsigned char uint8_t 8 255

unsigned int uint16_t 16 65535
unsigned long uint32_t 32 4,294,967,295

36



CHAPTER 3  SENSORS

An integer or real number that has a constant value throughout a sketch
can be defined as a const, which reduces memory requirements. For
example, the const int tempPin = AO instruction requires less memory
storage than if tempPin is defined as an integer with int tempPin = Ao.

Humidity Sensor

o . The DHT11 humidity and temperature sensor
”;;‘-"., ; * 2 measures temperatures between 0°C and 50°C
' and relative humidity between 20% and 90%.
Measurements are taken every second, with an accuracy of +2°C for
temperature and +5% for relative humidity. At a relative humidity of 0%, the
air is completely dry, and at 100% condensation occurs.

The DHT11 sensor is supplied as a unit or mounted on a printed
circuit board (PCB) that includes a 10k pull-up resistor between the
signal and 5V connections. The function of pull-up and pull-down
resistors was described in Chapter 2. Connection pins for the DHT11 unit
or PCB-mounted DHT11 are different, as shown in Figure 3-3. A 10kQ
pull-up resistor should be connected between the signal and 5V pins of the
DHT11 unit. For illustration, connections for both the DHT11 unit and the
PCB-mounted DHT11 are shown in Figure 3-3 and Table 3-4.

37



CHAPTER 3  SENSORS

Figure 3-3. DHT11 sensors

38

..lll.l.l.l.-w

e s FaBmBEENN

resistor

10k

fritzing

Table 3-4. Connections for DHT11 Sensors

Component Connect to and to

PCB DHT11 GND Arduino GND

PCB DHT11 VCC Arduino 5V

PCB DHT11 OUT Arduino pin 7

DHT11 GND Arduino GND

DHT11 OUT Arduino pin 12 10k resistor
DHT11 VCC Arduino 5V 10k<2 resistor




CHAPTER 3  SENSORS

Library Installation

A library of instructions is required to use the DHT11 sensor. While the
Arduino IDE includes several libraries for managing hardware, such as

writing to an SD card or controlling a motor, a library for the DHT11 sensor
must be downloaded and installed into the Arduino IDE. There are three

methods for installing a library into the Arduino IDE.

Library Installation Method 1

1.

Download the library in a .zip file and store on the
computer/laptop.

Open the Arduino IDE and select Sketch » Include
Library » Add .zip Library.

Select the location where the .zip file was saved
when downloaded.

Select the .zip file containing the library and

click Open. The library is installed in the default
Documents » Arduino » libraries folder.

To confirm the location of the default folder, select
File » Preferences in the Arduino IDE.

Library Installation Method 2

1.

Download the library in a .zip file and extract the
.zip file to the default Documents » Arduino »
libraries folder.

2. To confirm the location of the default library folder

for the Arduino IDE, select File » Preferences.

39



CHAPTER 3  SENSORS

3. The Arduino IDE must be restarted before the
installed library is listed in the Arduino IDE using
Sketch » Include Library.

Library Installation Method 3

1. Several libraries are directly accessible by the
Arduino IDE and do not have to be downloaded as
.zip files. Before downloading a library .zip file, first
check if the library is not already available within
the Arduino IDE framework.

2. Open the Arduino IDE and select Sketch » Include
Library » Manage libraries.

3. Inthe Library Manage window, use the Filter your
search option to locate the required library.

4. Click More info, select the library version number,
and click Install.

For each library listing, within the Arduino IDE, select More info to
access GitHub for library documentation and updates.

There are example sketches within each library, which are accessed
within the Arduino IDE by selecting File » Example » library name.

There are several libraries for the DHT11 sensor. The dht library
(DHTIib) by Rob Tilllaart is recommended. The dht library is contained
within a .zip file available at https://github.com/RobTillaart/Arduino.
Use installation method 1 or method 2 to install the dht library.

Alibrary is included in a sketch with the #include <libraryname.h>
instruction, which references the libraryname.h file located in the
Documents » Arduino » libraries » libraryname folder. Note there is no
semicolon at the end of the library #include instruction. When a library is
included in a sketch, a variable must be associated with the library, which

40


https://github.com/RobTillaart/Arduino

CHAPTER 3  SENSORS

is called “creating an instance of the class,” where class is the library. The
variable has the properties of the library, in a similar way that a variable
defined as an integer has the properties of an integer. Instructions specific
to a library are prefixed with the variable name.

For example, the dht library is included in the sketch with the #include
<dht.h> instruction. The DHT variable is associated with the dht library
with the dht DHT instruction. The dht library-specific temperature
instruction is prefixed with DHT in the sketch DHT . temperature
instruction.

Listing 3-2 displays (on the serial monitor) the temperature and
humidity measurements from a DHT11 unit and a PCB-mounted DHT11
sensor, but only for consistency with Figure 3-3. Comment out instructions
for the DHT11 unit or the PCB-mounted DHT11 sensor, as required.

Text is displayed on the serial monitor before the temperature or
humidity reading is displayed. Text is included in quotation marks (" "),
as is the tab character, which is \'t. The sensors are read at one-second
intervals, using the delay(1000) instruction to wait 1000ms. The humidity
component of the DHT11 sensor is more responsive to change than the
temperature component.

Listing 3-2. DHT11 Sensors

#include <dht.h> // include dht library

dht DHT; // associate DHT with dht library
int DHTpin = 12; // DHT11 unit on pin 12

int PCBpin = 7; // PCB mounted DHT11 on pin 7
int check;

void setup()
{

Serial.begin(9600); // define Serial output baud rate

}

41



CHAPTER 3  SENSORS

void loop()

{

check = DHT.read11(DHTpin); // read DHT11 sensor on DHTpin
Serial.print("DHT11 Unit temp: "); //print text followed by a space
Serial.print(DHT.temperature,0); //temperature reading, integer only

Serial.print("\thumidity: "); // print tab then text
Serial.println(DHT.humidity,0); // humidity reading, integer only
check = DHT.read11(PCBpin); // repeat for the DHT11 on PCB

Serial.print("DHT11 PCB temp: ");
Serial.print(DHT.temperature,0);
Serial.print("\thumidity: ");
Serial.println(DHT.humidity,0);

delay(1000); // delay one second

Light Dependent Resistor

quantify incident light, as the resistance of the LDR

. A light dependent resistor (LDR), or photoresistor, is used to

decreases with increasing incident light. The LDR is
combined with a 4.7kQ resistor to form a voltage divider
(see Figure 3-4), which is outlined in more detail later in the
chapter. The voltage divider’s output voltage, reflecting the
LDR resistance, is converted by the Arduino’s analog to
digital converter (ADC) to a digital value. The LDR’s
resistance is between 3kQ and 5kQ in average daylight, so a
4.7kQ resistor provides a balanced resistance for the voltage

divider. Like any resistor, an LDR can be connected either way around in a

circuit.

42



CHAPTER 3  SENSORS

L

GND : ) e

lgray)

our
oumpy
(9)]
<

BRI
(D)

4.7kQ)
resistor

LDR

Figure 3-4. LDR and voltage divider

Avoltage divider’s output voltage, V,,, is V,,| —2*— |, where
R, +R

R;pr and R, are the LDR and known resistor resistances, respectively,

resistor

and V;, is the input voltage of 5V from the Arduino. As the incident light
increases, the LDR’s resistance decreases and the output voltage of the

voltage divider increases. The Arduino ADC converts the voltage divider’s
V. x1023

output voltage to a digital reading equal to —e« =" ' The LDR’s
. . 1023 . s
resistance is | —————1|R ;. » which ranges from 700€2 in light
reading

conditions to 50kQ in the dark, corresponding to light intensity readings of
890 and 90, respectively.

The LDR can be used to change the brightness of an LED, depending
on the incident light, such as a night light (see Figure 3-5). The connections
and sketch are shown in Table 3-5 and Listing 3-3. The LED is turned on
only when the light intensity is low, with a threshold of 500 for the voltage

43



CHAPTER 3  SENSORS

divider reading. A high LED brightness is required in low light conditions,
so the voltage divider reading is inversely mapped to the LED brightness,
with low readings corresponding to high LED brightness.

LDR resistor ¢ « & s ¢ o »
4,7kQ

sov e v e Qi enee
LED resistor ¢ ;s ST IIIHEN L L
2200

fritzing

Figure 3-5. Light dependent resistor and LED

Table 3-5. Connections for Light Dependent Resistor and LED

Component Connect to and to

LDR right leg Arduino 5V

LDR left leg Arduino A0

LDR left leg 4.7kQ resistor Arduino GND
LED long leg Arduino pin 11

LED short leg 220Q resistor Arduino GND

44



CHAPTER 3  SENSORS

Listing 3-3. Light Dependent Resistor and LED

int Vdivid = Ao; // voltage divider analog pin
int LEDpin = 11; // LED on PWM pin
int thresh = 500; // threshold light intensity

int reading, bright;

void setup()

{
pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{
reading = analogRead(Vdivid); //voltage divider reading
bright = 0; // set LED brightness to zero

// map reading to LED brightness
if(reading<thresh) bright = map(reading, 0, thresh, 255, 0);
analogWrite(LEDpin, bright); // change LED brightness
delay(1000); // delay 1000ms

}

The analogRead(Vdivid) instruction reads the value on the analog pin,
Vdivid, with values between 0 and 1023. The bright = map(reading, 0,
thresh, 255, 0) instruction maps a reading value between 0 and thresh
(=500) to a LED bright value of 255 to 0. Note that the low LDR readings
are mapped to high LED brightness values. A mapping of analog inputs to
analog outputs is often required, as the analog inputs are on a scale of 0 to
1023, while analog outputs are on a scale of 0 to 255.

45



CHAPTER 3  SENSORS

Light Dependent Resistor and Several LEDs

A light dependent resistor can be used to turn on a number of LEDs,
depending on the ambient light, with a brighter light turning on more LEDs
(see Figure 3-6, Table 3-6, and Listing 3-4). The LEDs do not have to be
connected to Arduino PWM pins, as the LEDs are only turned on or off. The
map () function converts the output from the voltage divider to the number
of LEDs to be turned on, equal to the level variable. In the sketch, level LEDs
are turned on and (nLEDs - level) LEDs are turned off, where nLEDs is the
total number of LEDs. The maximum value of level is the number of LEDs
plus one, so that no LEDs are turned on in very low ambient light.

Joutnpay A

DA =

L
e

[
L I

LI I I
LI BB O B B
LI TR TR I I O
s e e s e e e e
.

* * IOR resistor * LED resistors
4.7kQ

" e “ e e " e e “ 0 e e LR B

fritzing
Figure 3-6. LDR and several LEDs

46



CHAPTER 3  SENSORS

Table 3-6. Connections for LDR and Several LEDs

Component Connect to and to

LDR left leg Arduino 5V

LDR right leg Arduino A0

LDR right leg 4.7k resistor Arduino GND
LED long legs Arduino pins 8, 9,11,12,13
LED short legs 220Q resistors Arduino GND

Listing 3-4. LDR and Several LEDs

int Vdivid = Ao; // voltage divider analog pin
int nLEDs = 5; // number of LEDs

int LEDpin[] = {8, 9, 11 ,12, 13}; //LED pins

int reading, level;

void setup()

{ // define LED pins as outputs
for (int i=0; i<5; i++) pinMode(LEDpin[i], OUTPUT);

}

void loop()

{
reading = analogRead(Vdivid); // voltage divider reading
level = 0; // set number of LEDs to zero
level

map(reading, 0, 1023, 0, nLEDs+1); //map reading to level
for (int i = 0; i < nLEDs; i++)

{ // turn on LED
if (i < level) digitalWrite(LEDpin[i], HIGH); //less than level
else digitalWrite(LEDpin[i],LOW); //otherwise turn off LED

}

delay(1000); // delay 1000ms

}

47



CHAPTER 3  SENSORS

The int LEDpin[] = {8, 9, 11, 12, 13} instruction defines an
array of integer values, with the values of the array referenced as LEDpin[0]
to LEDpin[4] and not as LEDpin[1]to LEDpin[5]. The size of the array does
not have to be explicitly defined, as it is implicitly defined by the number of
values between the curly brackets. The size of an array can also be defined
with the int LEDpin[5] instruction.

The for (int i = start; i < finish; i++) instruction repeats the
series of instructions contained in the curly brackets (finish - start) times
by incrementing the counter i from start to finish. For example, to repeat
an instruction four times, the instruction is for (int i = 0; 1 < 4;
i++) with the counter i taking the values 0, 1, 2 and 3. If the counter is to
run from 10 to 6, for example, then the instruction is for (int i = 10;

i »5; i--) with counter i taking the values 10, 9, 8, 7, and 6.

In Listing 3-4, a for () instruction is used to define the LED pins
as OUTPUT, rather than having to repeat the pinMode(pin, OUTPUT)
instruction several times. The second for () instruction repeats nLEDs
times with the counter i incrementing from 0 to nLEDs-1, and an LED is
turned on if i is less than level; otherwise, the LED is turned off.

Voltage Divider

A voltage divider (see Figure 3-7) can change an output voltage with a
combination of resistors, as in the two examples with a light dependent
resistor. A potentiometer is another example of a voltage divider when
used for tuning to a radio station or controlling the movement of a motor.
A second use of voltage dividers is as a logic level converter to reduce

the voltage of a transmitted signal. For example, a logic level converter

is required by a receiving Bluetooth module operating at 3.3V when
connected to an Arduino transmitting a 5V signal.

48



CHAPTER 3  SENSORS

VCC

L

L~ vout

gnz

GND

Figure 3-7. Voltage divider

A voltage divider consists of an input voltage, V,,, two resistors, RI and
R2, in series, and an output voltage, V,,, at the junction of the two resistors.
From Ohm’s law, as discussed in Chapter 1, the output voltage V,,;,=I x R2,

in

where Iis the current through the circuit, equal to , SO
R1+ R2

out

R2
=V, . If the two resistors are equal, then the output voltage
R1+R2

is half the input voltage.

A signal voltage of 5V can be reduced to 3.3V by using the combination
of 1kQ and 2kQ resistors or by using the combination of 5kQ and 10kQ
resistors. The difference between using the two sets of resistors is in the

power to reduce the signal voltage and the change in energy produces
2

heat. In Chapter 1, power was defined as V x I, which is L for a
R1+ R2

voltage divider. For the two combinations of resistors, the power is 8.33mW
and 1.67mW, respectively, so the 5kQ and 10k resistor combination
produces less heat as the current, and so the power, is lower than with the
1kQ and 2kQ resistors.

49



CHAPTER 3  SENSORS

A voltage divider should never be used to reduce the voltage to supply
RIxR2 g

R1+R2

a device or load. The Thevenin resistance of a voltage divider is

and the combination of a voltage divider and a load is essentially like another
Rload

RVD + Rload j ’

where Rload and RVD are the Thevenin resistance of the load and voltage

voltage divider with an output voltage to the load of Vm(

divider, respectively.

If a 5kQ and a 10kQ resistor combination formed a voltage divider to
reduce 5V to 3.3V for a device with a resistance of 66<2, then the actual
voltage supply to the device would be only 0.1V. Conversely, if a 502 and
a 100Q2 resistor combination formed the voltage divider, then the output
voltage would be the required 3.3V, but the power output would be
250mW, which may be sufficient to burn out the resistors.

Ultrasonic Distance Sensor

The HC-SR04 ultrasonic distance sensor estimates
distance by transmitting (sensor T) an ultrasonic sound
wave and measuring the time taken to receive (sensor

R) the echo. The frequency of the sound wave is 40kHz,
which is above the upper limit of human hearing of
20kHz. The distance, in centimeters, between the sensor and the target
point is half the echo time, measured in microseconds, multiplied by
0.0343, assuming a speed of sound of 343m/s.

The minimum and maximum measureable distances are 2cm and 4m,
respectively. For reliable distance measurements, the ultrasonic distance
sensor should be perpendicular to the scanned surface, both horizontally
and vertically, and the scanned surface should be flat. The time for the
signal to return over a 5m distance is 29ms, so a delay between subsequent
distance measurements of at least 40ms avoids interference between
signals from different measurements.

50



CHAPTER 3  SENSORS

To initiate the ultrasonic distance sensor, the trigger pin is held HIGH
for at least 10ps. The sensor then sends out an eight-cycle signal at 40kHz
with the pulseIn() function, automatically setting the echo pin to HIGH,
and waits for the signal to return, when the echo pin is set to LOW. The
time interval between the echo pin changing from HIGH to LOW s the
echo time. If the echo pin is HIGH when the pulseIn() function is called,
the pulseIn() function waits until the echo pin is set to LOW and then to
HIGH before timing the signal.

An ultrasonic distance sensor to measure distance is given in Figure 3-8,
with connections in Table 3-7 and a sketch in Listing 3-5.

o o) oM

rxmm Arduino”

ity %

2!!!::!"'&.

fritzing

Figure 3-8. Ultrasonic distance and temperature sensors

51



CHAPTER 3  SENSORS

Table 3-7. Connections for Ultrasonic Distance

and Temperature Sensor

Component Connect to
HC-SR04 VeeC Arduino 5V
HC-SR04 Trig Arduino pin 6
HC-SR04 Echo Arduino pin 7
HC-SR04 GND Arduino GND
LM35DZ GND Arduino GND
LM35DZ oUT Arduino pin A5
LM35DZ \/CC Arduino 5V

Listing 3-5. Measure Distance with the Ultrasonic Distance Sensor

int trigPin = 6;
int echoPin = 7;
float duration, distance;

void setup()
{
Serial.begin(9600);
pinMode(trigPin, OUTPUT);
}

void loop()

{
digitalWrite(echoPin,
digitalWrite(trigPin,
delayMicroseconds(2);
digitalWrite(trigPin,
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);

LOW) ;
LOW) ;

HIGH);

52

// HC-SR04 trigger pin
// HC-SR04 echo pin

// define Serial output baud rate
// define trigger pin as output

// set the echo pin LOW
// set the trigger pin LOW

// set the trigger pin HIGH for 10us

// measure the echo time (ps)



CHAPTER 3  SENSORS

distance = (duration/2.0)*0.0343; //convertecho time to distance (cm)
if(distance>400 || distance<2) Serial.println("Out of range");
else

{

Serial.print("Distance : ");
Serial.print(distance, 1); Serial.println(" cm");

}

Ultrasonic distance sensor information can be displayed on the
Arduino IDE serial monitor by selecting Tools » Serial Monitor (see
Figure 3-9). The communication speed of 9600 baud (Bd) between the
Arduino and the serial monitor is defined in the void setup() function
with the Serial.begin(9600) instruction.

COM4 (Arduino/Genuino Uno) - ] X
Send
A
Out of range
Cut of range
Distance : 2.7 cm
Distance : 3.8 cm
Distance : 4.3 cm
Distance : 5.0 cm
Distance : €.5 cm
Distance : 7.4 cm
Distance : 8.0 cm
Distance : 8.5 cm
Distance : 9.2 cm
Distance : 10.4 cm
Distance : 11.3 cm
Distance : 12.7 cm
Distance : 14.6 cm
Distance : l6.4 cm
Distance : 17.5 cm
Distance : 20.3 cm
Distance : 24.0 cm W
(] Butoscrolf Nolineendng + |9600baud |  Clear output

Figure 3-9. Serial monitor

53



CHAPTER 3  SENSORS

There are several options for displaying information on the serial

monitor.
o Serial.print(X, d) print the real number X
with d decimal places
o Serial.print("abc") print abc

o Serial.print("abc\tdef") insertatab (\t)after abc
and before def

o Serial.println("abc") insert a carriage return (\1)
and new line (\n) after abc

There are several libraries for the HC-SR04 ultrasonic distance sensor
and the NewPing library by Tim Eckel is recommended. The NewPing
library can be installed within the Arduino IDE using installation method 3,
as outlined earlier in the chapter.

The sketch (see Listing 3-6) for the ultrasonic distance sensor includes
the library, NewPing, with the #include <NewPing.h> instruction. Note
there is no semicolon after the angle brackets with the library name. The
sonar functions in the NewPing library are initialized with the NewPing
sonar(trigPin, echoPin, maxdist) instruction, defining the trigger and
echo pins and the expected maximum measurement distance to avoid
noise. The distance between the start and target point is half the echo time
multiplied by the speed of sound and divided by 10*, given the echo time

in ps and the distance in centimeters (cm).

Listing 3-6. Ultrasonic Distance Sensor and NewPing Library

#include <NewPing.h> // include NewPing library

int trigPin = 6; // trigger pin

int echoPin = 7; // echo pin

int maxdist = 100; // set maximum scan distance (cm)
int echoTime; // echo time

float distance; // distance (cm)

54



CHAPTER 3  SENSORS

NewPing sonar(trigPin, echoPin, maxdist); //associate sonar with

// NewPing library

void setup()

{
Serial.begin(9600); // set baud rate for Serial Monitor

}

void loop()

{
echoTime = sonar.ping(); // echo time (ps)
distance = (echoTime/2.0)*0.0343; // distance between sensor and target
Serial.print("echo time: "); // print text "echo time: "
Serial.print(echoTime); // print echo time
Serial.print(" microsecs\t"); // print text " microsecs" and tab
Serial.print("distance: "); // print text "distance: "
Serial.print(distance,2); // print distance with 2 DP
Serial.println(" cm"); //" cm" followed by a new line
delay(500);

}

The following are other sonar functions in the NewPing library.

sonar.ping_cm(): Returns the distance between the
sensor and the target point, but there are no digits after
the decimal point.

sonar.convert _cm(echotime): Returns the distance
given the echo time, but outlier values can be observed.
It is more robust to calculate the distance between the
sensor and target point directly from the echo time.

sonar.ping median(number of observations):
Returns median echo time for the number of
observations, with a minimum of five observations,
after excluding out-of-range values.

55



CHAPTER 3  SENSORS

Speed of Sound

The speed of sound depends on the air temperature and can be estimated
as 331.3 + 0.606 temp m/s, where temp is the temperature in degrees
Celsius. If an temperature sensor is connected to Arduino analog pin A5,
then the speed of sound can be estimated based on the echo time over

a known distance (see Figure 3-8 and Table 3-7). The known distance is
defined at the start of the sketch (see Listing 3-7).

Listing 3-7. Speed of Sound

#include <NewPing.h> // include NewPing library
int pinTrig = 6; // trigger pin
int pinkcho = 7; // echo pin
int maxdist = 100; // max scan distance (cm)
int echoTime;
float distance = 15; // known distance to scan (cm)
NewPing sonar(pinTrig, pinEcho, maxdist); //associate sonar with
// NewPing library
int tempPin = A5; // temperature sensor on analog pin A5
float speed, temp, predict;
void setup()
{
Serial.begin(9600); // define Serial output baud rate

analogReference (INTERNAL); //set ADC voltage to 1.1V rather than 5V
}

void loop()
{

echoTime = sonar.ping median(5); // median echo time (ps)
speed = distance*2.0*pow(10,4)/echoTime; //speed of sound (m/s)
Serial.print(echoTime);Serial.print(" microsecs\t"); // print echo time

56



CHAPTER 3  SENSORS

Serial.print("speed "); // print text "speed"”
Serial.print(speed,1); Serial.print("\t"); //printspeed to 1DP and tab
temp = (analogRead(tempPin)*110.0)/1023; //read temperature
predict = 331.3 + 0.606 * temp; // calculate speed of sound
Serial.print("predict ");

Serial.print(predict,1);Serial.println(" m/s");  //print prediction to 1DP
delay(500);

The pow(x,Y) instruction raises the x variable to the power y, so
pow(10,4) is 10%.

Hall Effect Sensor

<& Hall effect sensors are activated by a magnet field and are used
p 4 to measure rotational speed of a car crankshaft or a bicycle
wheel or for detecting the presence of a magnetic field, as in a
door or window alarm system.
When the Hall effect sensor is in a magnetic field, the field exerts
a force on the semiconductor material of the sensor and deflects the
material’s electrons away from the magnetic field. The movement of
electrons creates a potential difference between the two sides of the
semiconductor material, which indicates that the sensor is in a magnetic
field. The Hall effect sensor is sensitive to the magnetic field’s polarity,
with the sensor activated when the South pole of the magnet is close to the
label side of the sensor or when the North pole of the magnet is close to
the flat side of the sensor (see Figure 3-10). The orientation of a magnet is
determined with a compass.

57



CHAPTER 3  SENSORS

LR I I " e e e
LB

Hall sensor [Sttyiviviy S
Flat side towards Arduino

fritzing
Figure 3-10. Hall effect sensor

The 3144 Hall effect sensor (see Figure 3-10 and Table 3-8) requires
a pull-up resistor (see Figure 3-11). The internal pull-up resistors of
the Arduino input pins can be used, rather than connecting a resistor
between the output and VCC pins of the sensor,. The Arduino’s internal
pull-up resistor is activated with the digitalWrite(pin, INPUT PULLUP)
instruction.

58



CHAPTER 3  SENSORS

IR

GND| i =
CLTTELTTTTTT T
A
il internal 20kQ)
switch resistor

Figure 3-11. Pull-up resistor

Table 3-8. Connections for Hall Effect Sensor

Component Connect to
Hall VCC (flat side left) Arduino VCC
Hall GND Arduino GND
Hall out (flat side right) Arduino pin 8

The structure of the sketch for the Hall effect sensor (see Listing 3-8) is
based on the switch sketch of Listing 2-2. The sketch determines the rpm,
time per revolution and speed of a bicycle with 700x32 tyres, which have a
circumference of 2.16m. The results are displayed on the serial monitor in
this chapter, as display screens are outlined in Chapters 4 and 13.

59



CHAPTER 3  SENSORS

Listing 3-8. Hall Effect Sensor

int switchPin = 8;

int switchState = LOW;
int revolution = 0;
float circum = 2.16;
unsigned long time = 0;
float speed, rpm;

int reading;

void setup()

{
pinMode(switchPin, INPUT PULLUP);

Serial.begin(9600);
}

void loop()

{
reading = digitalRead(switchPin);
if(reading != switchState)

{

// Hall effect sensor pin
// set switch to LOW

// number of revolutions
// tyre circumference

// time (ms) per revolution

// pull-up resistor on hall
// effect sensor pin
// set baud rate for Serial Monitor

// read Hall switch
// switch state changed

if (reading == HIGH 8& switchState == LOW)

{

revolution = revolution +1;
time = millis() - time;
speed = 3600.0*circum/time;
Ipm = 60000.0/time;
Serial.print(revolution);
Serial.print("\t");
Serial.print(speed,1);
Serial.print("km/h\t");

60

// start of new revolution

// increment number of revolutions
// time (ms) since last revolution

// speed calculationin km/h

// revolutions per minute

// print number of revolutions

// and a tab

// print speed to 1DP

// with " km/h" and tab



CHAPTER 3  SENSORS

Serial.print(rpm,0);Serial.println("rpm"); // print rpm, "rpm"
time = millis(); //update revolution time
}
switchState = reading; // update hall switch state
}
}

Sound Sensor

The LM393 sound sensor (see Figure 3-12 with connections in

.&” Table 3-9) detects sound above a threshold, which is

controlled by adjusting the sensor’s potentiometer. In the

sketch (see Listing 3-9), an LED is turned on while the sound
level is above a threshold level and the serial monitor displays that a new
sound has been detected or that the previous sound has finished. A
minimum time lag between sounds has to occur before two sounds are
considered discrete rather than continuous. Reducing the time lag,
increases the “sensitivity” to new sounds. When the detected sound is
above the threshold, the output is set to LOW rather than to HIGH.

61



CHAPTER 3

SENSORS

LED resistor
220Q

fritzing
Figure 3-12. Sound sensor
Table 3-9. Sound Sensor
Component Connect to and to
Sound sensor VCC Arduino 5V
Sound sensor GND Arduino GND
Sound sensor OUT Arduino pin 11
LED long leg Arduino pin 5
LED short leg 220€ resistor Arduino GND

62




CHAPTER 3  SENSORS

Listing 3-9. Sound Sensor

int soundPin = 11; // sound sensor pin

int LEDpin = 5; // LED pin

int detected = LOW; // sound detect state to LOW
unsigned long detectTime; //time sound detected

int lag = 1000; // time between sounds (ms)
int sound;

void setup ()

{
Serial.begin(9600); // set baud rate for Serial Monitor
pinMode(LEDpin, OUTPUT); //LED pin as output
}
void loop ()
{
sound = digitalRead(soundPin); //read sound pin
if (sound == LOW) // sound detected with LOW, not HIGH
{
detectTime = millis(); //starttime of new sound
if (detected == LOW) // if currently no sound
{ // print "new SOUND" and tab
Serial.print("new SOUND");Serial.print("\t");
detected = HIGH; // update sound detect state to HIGH
digitalWrite(LEDpin, detected); //turn LED on
}
}
else if (sound == HIGH) //no sound detected
{ // continuous sound no longer detected

if(detected == HIGH 8& (millis()-detectTime) > lag)
{

Serial.println("now quiet"); //print "now quiet" with a new line

63



CHAPTER 3  SENSORS

detected = LOW; // update sound detect state to LOW
digitalWrite(LEDpin, detected); //turn LED off
}
}
}

Infrared Sensor

@ Infrared (IR) remote controls are used to operate devices, such
as television or machinery, by transmitting a signal consisting
vee of pulses of infrared light. The VS1838B infrared sensor
receives an IR signal, which is decoded to implement the
appropriate action. For example, the IR signal in Figure 3-13 has binary
and HEX representations of B011101 and 0x1D, respectively. Infrared light
is not visible to the human eye, as the wavelength of IR light, 700 nm to
1000nm, is longer the wavelength of visible light, 400 nm to 700nm.
However, the IR light from an IR transmitter is visible though the camera of
a mobile phone or tablet, as generally the cameras do not have an IR filter.

Figure 3-13. Infrared signal

The IRremote library by Ken Shirriff is recommended for sketches with
an IR sensor. The IRremote library is available within the Arduino IDE and
is installed using installation method 3, as outlined earlier in the chapter.

64



CHAPTER 3  SENSORS

When the IR sensor detects a signal, the sketch (see Listing 3-10)

displays the device type, HEX representation and bit count of an IR signal

and turns the LED on for one second (see Figure 3-14 with connections in

Table 3-10).

OUTI pay EEXH

% e v CEEEEED Y F e

FESISEOr + wPf=s o 1 3 70 v 0o
2200 LR O TR I I ]
VS1838B

fritzing
Figure 3-14. Infrared sensor

Table 3-10. Infrared Sensor

Component Connect to and to

IR sensor OUT Arduino pin 12

IR sensor GND  Arduino GND

IR sensor VCC ~ Arduino 5V

LED long leg Arduino pin 4

LED short leg 220Q resistor  Arduino GND

65



CHAPTER 3  SENSORS

Listing 3-10. Infrared Sensor

#include <IRremote.h> // include IRremote library

int IRpin = 12; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library
decode_results reading; // IRremote variable reading

int LEDpin = 4; // LED pin

void setup()

{
Serial.begin(9600); // set baud rate for Serial Monitor
irrecv.enableIRIn(); // start the infrared receiver
pinMode(LEDpin, OUTPUT); // LED pin as output
}
void loop()
{
if(irrecv.decode(8reading)) //read pulsed signal
{ // NEC, Sony, RC5 or RC6 signals
if(reading.decode_type == NEC) Serial.print("NEC: ");
else if(reading.decode_type == SONY) Serial.print("Sony: ");
else if(reading.decode_type == RC5) Serial.print("RC5: ");
else if(reading.decode type == RC6) Serial.print("RC6: ");
else Serial.print("Other: ");
Serial.print(reading.value, HEX); // display device type and
Serial.print("\tBits: "); // HEX code on Serial Monitor
Serial.println(reading.bits); //display number of IR signal bits
digitalWrite(LEDpin, HIGH); // turn LED on
delay(100); // delay before next IR signal
digitalWrite(LEDpin, LOW); // turn LED off
irrecv.resume(); // receive the next infrared signal
}
}

66



CHAPTER 3  SENSORS

Infrared Distance Module

Infrared can also be used to determine the distance from an
’ object based on the time taken for the infrared signal to bounce
g off a target object and be received by the infrared sensor. The

TCRT500 infrared distance module includes an infrared
emitter and receiver on one side of the module, with a potentiometer on the
other side. The analog value on the Arduino A0 pin is determined by both
the distance to the target object and the color of the target object. For
example, a black surface reflects less light than a white surface, so the
distance to a black target object appears greater than the distance to a white
target object in the same position. If the received signal is less than the
threshold, set by the potentiometer, then the TCRT500 DO pin state changes
from HIGH to LOW and the built-in LED turns on. The TCRT500 infrared

distance module is connected to 5V (see Figure 3-15 and Table 3-11).

»xxx r
CTTI
=

b |

a

=

5
38 5

oy

. O] =

fritzing

Figure 3-15. Infrared distance sensor

67



CHAPTER 3  SENSORS

Table 3-11. Connections for Infrared Distance Sensor

Component Connect to
TCRT500 VcC Arduino 5V
TCRT500 GND Arduino GND
TCRT500 DO Arduino pin 7
TCRT500 A0 Arduino pin A0

The sketch (see Listing 3-11) displays the analog value on pin A0 and

the state of the built-in LED.

Listing 3-11. Infrared Distance Sensor

int IRpin = Ao;
int threshPin = 7;
int reading, thresh;

void setup()
{
Serial.begin(9600);

}

void loop()

{
reading = analogRead(IRpin);
thresh = 1-digitalRead(threshPin);
Serial.print("Distance: ");
Serial.print(reading);
Serial.print("\tThreshold : ");
Serial.println(thresh);
delay(1000);

68

// IR sensor pin
// threshold pin

// set Serial Monitor baud rate

// read IR sensor pin

// read threshold pin

// print "Distance: " to Serial Monitor
// print IR sensor value

// print a tab and "Threshold"

// print threshold value

// delay 1s



CHAPTER 3  SENSORS

Passive Infrared Sensor

All objects with a temperature above absolute zero emit heat
iiil A energy i.n the form of infrared radiation. Tl'le HR—SCSO% .
passive infrared (PIR) sensor converts the infrared radiation
into an output voltage. The PIR sensor has two halves to detect a change in
infrared radiation, caused by an object moving in front of the PIR sensor, as
movement is indicated by a change in infrared radiation not the level of
infrared radiation. The Fresnel lenses above the PIR sensor increase the
field of view of the PIR sensor to about 110° with a range of six meters. PIR
sensors are used in motion detector alarms.
e 22T The PIR sensor requires up to 60s to stabilize after switching
ﬂ on and the output stays HIGH for a minimum of 2.5s after
movement is detected. The time delay (7x) and the sensor
sensitivity (Sx) are increased by turning clockwise the appropriate
potentiometer on the side of the module. Smaller movements are detected
with high sensitivity with a distance range between 3m and 7m. The time
delay ranges from 2.5s to 5min, so initially the most counterclockwise
position is useful.

The structure of the PIR sensor sketch (see Listing 3-12, Figure 3-16,
and connections in Table 3-12) is the same as the structure of the sound
sensor sketch (see Listing 3-9). In both sketches, the void loop() function
consists of two halves, with the first half detecting the occurrence of a new
event and the second half determining if the event has ended.

69



CHAPTER 3

SENSORS

e | 1 e o

CEU I I I O A O . e
- " s e e e -
LRI LU I I BN
. e " e 8 e 88w
.. LRI B A A
L LRI
. " s e e e

LED resistor

2209

Figure 3-16. PIR sensor

70

fritzing

Table 3-12. PIR Sensor Connections

Component Connect to and to

PIR sensor VCC Arduino 5V

PIR sensor OUT Arduino pin 11

PIR sensor GND Arduino GND

LED long leg Arduino pin 8

LED short leg 2200 resistor Arduino GND




CHAPTER 3  SENSORS

Listing 3-12. PIR Sensor

int PIRpin = 11; // PIR sensor pin
int LEDpin = 8; // LED pin
int PIRstate = LOW; // set PIR state to LOW

int reading;
unsigned long detectTime; // time lag on PIR sensor
float moveTime;

void setup()

{
Serial.begin(9600); // set Serial Monitor baud rate
pinMode(LEDpin, OUTPUT); // LED pin as output
}
void loop()
{
reading = digitalRead(PIRpin); // read PIR pin
if (reading == HICH 8& PIRstate == LOW) //PIR detected new
{ // movement
Serial.print("New movement detected"); //printto Serial Monitor
detectTime = millis(); // time of movement
PIRstate = HIGH; // update PIR state to HIGH
digitalWrite(LEDpin, PIRstate); // turn LED on
} // movement no longer detected
else if (reading == LOW && PIRstate == HICH)
{

moveTime = millis() - detectTime; //duration of movement
moveTime = moveTime/1000.0;

Serial.print(" and lasted for "); //printto Serial Monitor
Serial.print(moveTime,1); // print detect time (s) with 1DP
Serial.println(" seconds"); // print text with a new line

71



CHAPTER 3  SENSORS

PIRstate = LOW,; // update PIR state to LOW
digitalWrite(LEDpin, PIRstate); //turn LED off

}
}

Accelerometer and Gyroscope

An accelerometer measures an object’s acceleration, but not
relative to an observer. For example, an object at rest on the
Earth’s surface has an acceleration due to Earth’s gravity of

9.81ms™. For example, an accelerometer detects the orientation
of a laptop to ensure that an image is displayed upright. A gyroscope
measures angular velocity and when combined with an accelerometer
forms an inertial navigation system.

The GY-521 module includes an MPU-6050 accelerometer and
gyroscope sensor, which can be powered by 3.3V or 5V, but 3.3V is
preferable. The GY-521 module communicates with 12C (see Chapter 4)
with an I2C address of 0x68. The 12C address can be changed to 0x69 by
setting the ADO pin to HIGH rather than the default LOW, to include a
second GY-521 module. Only the VCC, GND and two 12C communication
pins, SDA and SCL, are connected to the Arduino, with the latter two
connected to pins A4 and A5, respectively.

The values for the three accelerometer and gyroscopic axes (X: left-right,
Y: forward-back, and Z: up-down) are stored in six pairs of registers (see
Table 3-13), with values in a pair of registers then combined. For example,
if the values in the pair of registers for the accelerometer X axis are AxHigh
and AxLow, then the combined value is 28 x AxHigh + AxLow equivalent
to the AxHigh<<8 | AxLow instruction, which shifts the value in the high
register by eight positions and then adds the value in the low register.

72



CHAPTER 3  SENSORS

Table 3-13. Data Registers for Accelerometer and Gyroscope Sensor

Variable High address Low address
Accel X-axis 0x3B 0x3C
Accel Y-axis 0x3D 0x3E
Accel Z-axis 0x3F 0x40
Temperature 0x41 0x42
Gyro X-axis 0x43 0x44
Gyro Y-axis 0x45 0x46
Gyro Z-axis 0x47 0x48

Using the YPR (yaw, pitch, roll) representation (see Appendix), the
accelerometer measurements are converted to a roll angle = arctan(y/z)180/x
and a pitch angle = — arcsin (x)180/x, where, x, y, and z are the adjusted

accelerometer measurements. Defining | A| =\a’ +a’ +a’, ,whereay, ay,
and a; are the accelerometer measurements, each divided by 2'*, with the
adjusted accelerometer measurement x = ay/|A| and similarly for ayand a,.
The arctan(numerator/denominator) instruction in the Arduino IDE is
atan2(numerator, denominator), which is equivalent to atan2
(denominator, numerator) in Excel.

To illustrate using the GY-521 module for determining orientation, LEDs
are positioned on four sides of the GY-521 module (see Figure 3-17) and
when the module is tilted, the corresponding LEDs are turned on, based
on the accelerometer measurements. In the void setup() function of
the sketch, the I2C address of the MPU-6050 sensor is defined, the power
management register is set to zero to “wake up” the sensor. Within the void
loop () function of the sketch, the accelerometer measurements are adjusted
to the x, y, and z values, to then calculate the roll and pitch angles.

73



CHAPTER 3  SENSORS

!

-

r.o.

b

]

s
fal
2
=
s a o3

;
N\

RIGRT. LED

. & 8 8
. . & & 8 8

| N I B

I

GY-521
fritzing
Figure 3-17. GY-521 with LEDs

Using an aircraft analogy, a positive roll angle is a turn with the right
wing down and a positive pitch angle is the nose lifting up. If the roll angle
is greater than 10° or less than -10°, then the right or left LED is turned on,
with the front or back LED turned on when the pitch angle is greater than
10° or less than -10°, respectively.

The sketch (see Listing 3-13) uses the Wire library for 12C communication
between the Arduino and the GY-521 module. The Wire library is included
in the Arduino IDE, so only the I2C address of the GY-521 module is
required. Connections for the GY-521 module are given in Table 3-14).

74



CHAPTER 3

Table 3-14. GY-51 Module Connections

Component Connect to and to
GY-521 VCC Arduino 3.3V

GY-521 GND Arduino GND

GY-521 SCL Arduino A5

GY-521 SDA Arduino A4

LED long legs Arduino pins 10, 11,12,13
LED short legs 220Q resistors Arduino GND

Listing 3-13. GY-521 Module

#include<Wire.h>

int I2Caddress = 0x68;

int frontLED = 13;

int backLED = 11;

int rightLED = 12;

int leftLED = 10;

float accelX,accelY,accelZ;
float roll, pitch, sumsquare;

void setup()

{
Serial.begin(9600);
pinMode(frontLED, OUTPUT);
pinMode(backLED, OUTPUT);
pinMode(rightLED, OUTPUT);
pinMode(leftLED, OUTPUT);
Wire.begin();

// include Wire library
//12C address of the MPU-6050

// define LED pins

// accelerometer measurements

// define Serial output baud rate

// define LED pins as OUTPUT

// initiate 12C bus

SENSORS

Wire.beginTransmission(I2Caddress); // transmit to device at 12Caddress

75



CHAPTER 3

}

SENSORS

Wire.write(0x6B);
Wire.write(0);
Wire.endTransmission(1);

void loop()

{

}

Wire.beginTransmission(I2Caddress);

Wire.write(0x3B);
Wire.endTransmission(0);

Wire.requestFrom(I2Caddress,6,true);
accelX=Wire.read()<<8|Wire.read();
accelY=Wire.read()<<8|Wire.read();
accelZ=Wire.read()<<8|Wire.read();

accelX = accelX/pow(2,14);
accelY = accelY/pow(2,14);
accelZ = accelZ/pow(2,14);

// PWR_MGMT _1 register
// set to zero wakes up MPU-6050
// end of transmission

// transmit to device at

// 12Caddress

// start reading from register 0x3B
// transmission not finished

// request data from 6 registers

// combine AxHigh and AxLow

// combine AyHigh and AyLow

// combine AzHigh and AzLow

// scale X, Y and Z measurements

sumsquare = sqrt(accelX*accelX+accelY*accelY+accelZ*accelZ);

accelX = accelX/sumsquare;
accelY

accelY/sumsquare;
accelz

accelZ/sumsquare;

roll = atan2(accelY, accelZ)*180/PI;

pitch = -asin(accelX)*180/PI;
LEDs();

void LEDs()

{

int front = LOW;

int back = LOW;

int right = LOW;

int left = LOW;

if(roll>10) right = HICH;

else if(roll< -10) left = HIGH;
if(pitch>10) front = HIGH;

else if(pitch< -10) back = HIGH;

76

// adjusted accelerometer measurements

// roll angle
// pitch angle
// call function to control LEDS

// function to control LEDs

// turn off all LEDs

// right or left LEDS with roll angle

// front or back LEDs with pitch angle



CHAPTER 3  SENSORS

digitalWrite(frontLED, front); // if value = HIGH, LED on
digitalWrite(backLED, back); // if value = LOW, LED off
digitalWrite(rightLED, right);

digitalWrite(leftLED, left);

delay(500);

The GY-521 module includes a temperature sensor, with the temperature
measurement stored in the register after the accelerometer Z measurements.
The temperature, in degrees Celsius, is equal to temp/340.0 + 36.53,
where temp is the combined value from the temperature pair of registers.
Information on registers and temperature calculation is available from
InvenSense register data pages. The instructions in Listing 3-14 can be
included in Listing 3-13, between the Wire.endTransmission(0) and
accelX = accelX/pow(2,14) instructions.

Listing 3-14. Temperature Reading from GY-521 Module

Wire.requestFrom(I2Caddress,8,true); //requestdatafrom 8 registers
accelX=Wire.read()<<8|Wire.read(); // combine AxHigh and AxLow
accelY=Wire.read()<<8|Wire.read(); // combine AyHigh and AyLow
accelZ=Wire.read()<<8|Wire.read(); // combine AzHigh and AzLow
temp=Wire.read()<<8|Wire.read();

tempC = temp/340.0 + 36.53; // temperature reading

Summary

A selection of sensors were described with a demonstration sketch for each
sensor, because the sensors are used in subsequent projects. Sensors were
used to measure temperature, humidity, light, distance, sound, and the
speed of sound. The Hall effect sensor measured wheel revolutions with

a magnet. The infrared sensor detected signals, such as from a television
remote control, and measured distance with movement detected by the
passive infrared sensor. The accelerometer and gyroscope module detected

77



CHAPTER 3  SENSORS

when it was tilted. The voltage divider was combined with several sensors.
Installing libraries to the Arduino IDE was described. More programming
instructions were introduced to develop sketches to control the sensors.

Components List

e Arduino Uno and breadboard

e LED

e Resistors: 2209, 4.7k, and 10kQ2

o Light dependent resistor (or photoresistor)
e Temperature sensors: LM35DZ and DHT11
e Ultrasonic distance sensor: HC-SR04

o Hall effect sensor: 3144

e Magnet

e Sound sensor: LM393

e Infrared sensor: VM1838B

e Passive infrared (or PIR) sensor: TCRT500

e Accelerometer and gyroscope module: GY-521

78



CHAPTER 4

Liquid Crystal Display

The liquid crystal display (LCD) screen displays output
from the Arduino, so that the Arduino does not need to
be connected to a computer screen or laptop. A 16x4 LCD

with a HD44780 controller is used in the chapter, which can

display four rows of 16 characters per row, with each character defined by an
8x5-pixel array. LCDs have different sizes such as 16x2, 16x4, 20x2, and 20x4.

The LCD has 16 pins numbered from left to right, when looking
down on the screen. Some LCDs have no backlight function, so pins 15
and 16 are unconnected. The LCD screen contrast is controlled with
a 10kQ potentiometer. Details of the LCD pin functions are given in
Table 4-1. Register selection provides information on the type of signal
received by the LCD, such as an instruction to move the cursor to a
given position or the data on a character to be displayed.

Table 4-1. LCD Pin Description

Pin Description Arduino Pin
1 VSS Ground GND
2 VDD 5V power supply for logic 5V
3 VO LCD contrast adjustment Potentiometer signal pin
4 RS Register Selection: data or instruction  Pin 2
register for LCD controller
(continued)
© Neil Cameron 2019 79

N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_4



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Table 4-1. (continued)

Pin Description Arduino Pin

5 RW Read or Write mode GND for Write to LCD
6 E Enable data ready for transmission  Pin 3

7-10  DO0-D3 Unconnected

11-14  D4-D7 Unconnected Pin 4-Pin 7

15 Aor LED+ LED backlight (anode) 5V for backlight

16 Kor LED-  LED backlight (Cathode) GND for backlight

The LiquidCrystal library by Adafruit is built into the Arduino IDE,
so it does not need to be uploaded. The LCD control and data lines are
mapped to the Arduino pins with the LiquidCrystal 1lcd(RS, E, D4,
D5, D6, D7) instruction, where RS, E, and D4 to D7 are the Arduino pins
connected to the LCD pins. For example, if Arduino pins 2, 3, 4, 5, 6, and 7
are connected to the LCD RS, E and D4 to D7 pins, then the pin definition
instruction would be either

LiquidCrystal lcd(2, 3, 4, 5, 6, 7)

or
int RS = 2;
int E = 3;
int D4 = 4;
int D5 = 5;
int D6 = 6;
int D7 = 7;

LiquidCrystal lcd(RS, E, D4, D5, D6, D7);

In Listing 4-1, the number of seconds that the sketch has been running
and the temperature from an LM35DZ temperature sensor, described in

80



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Chapter 3, are displayed on the LCD (see Figure 4-1). The void setup()
function specifies the dimensions of the LCD screen and the text to be
constantly displayed, so that during the void loop() function only the
updated time and temperature are written to the LCD. The reference point of
the LCD to position a character is the top left-hand corner with position (0,0).
For example, the fifth column and second row position is (4,1). Connections,
other than the LCD, for Figures 4-1 and 4-2 are given in Table 4-2.

.h[ J0TYNY.

ll..l‘_llll..ll‘lllll.
I

fritzing

Figure 4-1. LCD and temperature sensor

81



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Table 4-2. Connections for LCD and Temperature Sensor

Component Connect to
LM35DZ GND Arduino GND
LM35Dz oUT Arduino pin A0
LM35DZ VCC Arduino 5V
Potentiometer GND Arduino GND
Potentiometer signal LCD pin 3
Potentiometer VCC Arduino 5V
Capacitor negative Arduino GND
Capacitor positive Arduino pin 9
Capacitor positive LCD pin 3

Listing 4-1. LCD and Temperature Sensor

#include <LiquidCrystal.h>
int LCDcol = 16;
int LCDrow = 4;

LiquidCrystal lcd (2,3,4,5,6,7);
int tempPin = Ao;

int time = 0;

int reading;

float temp;

void setup()

{
lcd.begin(LCDcol, LCDrow);

lcd.setCursor(0,0);
led.print("LCD to display");
lcd.setCursor(0,1);

82

// include the LiquidCrystal library

// number of LCD columns

// number of LCD rows

// associate lcd with LiquidCrystal library
// define LCD pins RS, E and D4 to D7

// LM35DZ temperature sensor pin

// define LCD dimensions

// move cursor to start of first row

// print first row "LCD to display”

// move cursor to start of second row



led.print("time and temp");

lcd.setCursor(3,2);

led.print(" secs");

lcd.setCursor(5,3);

led.print(" C");

analogReference (INTERNAL);
}

void loop()
{

lcd.setCursor(0,2);

if(time < 100) lcd.print(" ");

if(time < 10) lcd.print(" ");
lcd.print(time);
time++;

reading = analogRead(tempPin);
temp = (reading * 110.0)/1023;

lcd.setCursor(0,3);
lcd.print(temp);
if(time>999) time = 0;
delay (1000);

CHAPTER 4  LIQUID CRYSTAL DISPLAY

// print second row "time and temp"

// move cursor to insert "secs" on third row
// move cursor to insert "C" in fourth row

// set ADC voltage to 1.1V rather than 5V

// move cursor to start of third row
// spacing for 10s < time <100s

// spacing for time < 10s

// print time (s)

// increment time

// read temperature from sensor

// convert to Celsius given 1.1V range
// move cursor to start of fourth row
// print temperature

// reset time to zero

// delay 1000ms

Contrast Adjustment with PWM

The LCD contrast can be adjusted with pulse width modulation (PWM),
as described in Chapter 1, smoothed with a 100puF (or 0.1mF) capacitor
(see Figure 4-2). The LCD contrast increases with decreasing PWM. Note

that electrolytic capacitors are polarized and the anode must be at a higher

voltage than the cathode. The cathode has a

strip on the side of the capacitor.

u-n

marking and a colored

83



CHAPTER 4  LIQUID CRYSTAL DISPLAY

" " 7 “capatifor ©
0.1mF

fritzing

Figure 4-2. LCD contrast and PWM

The LCD contrast adjustment pin, V0, is connected to an Arduino
PWM pin with the capacitor connected across the PWM output and

ground. The following three instructions are added to the end of the void
setup() function.

int contrast = 9; // PWM pin for contrast
pinMode(contrast, OUTPUT); //define contrast pin as OUTPUT
analoghrite(9, 80); // PWM value of 80 (maximum is 255)

84



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Decreasing the PWM value decreases the LCD contrast.
The LCD backlight can be turned on or off with the instructions
lcd.backlight() and lcd.noBacklight (), respectively.

Scrolling Text

Rather than the displayed text being in a fixed position on the LCD, the text
can be scrolled across the LCD screen. Substrings of up to 16 characters
are printed, moving the start column from the right of the LCD screen to
the left. When the first 16-character substring has been displayed across
the LCD screen, the first character is dropped and a new last character is
added to the substring. The process is repeated, dropping one character
and adding another. The example text string is split over two lines of
instructions with the continuation character (\) (see Listing 4-2).

Listing 4-2. Scrolling Text on LCD

#include <LiquidCrystal.h> // include the LiquidCrystal library
int LCDcol = 16; // number of LCD columns

int LCDrow = 4; // number of LCD rows
LiquidCrystal lcd(2,3,4,5,6,7); //define LCD pins RS, E and D4 to D7
int first; // position of first letter in 16 character substring
int last = 0; // position of last letter in 16 character substring
int row = 1; // row of LCD to display text

int col;

String text = "The quick brown fox jumps over the lazy dog \
contains every letter of the alphabet."; //line continuation with \
// character
void setup()
{
lcd.begin(LCDcol, LCDrow); //define LCD dimensions
text = text + " "} // add space at end of text as a buffer

}

85



CHAPTER 4  LIQUID CRYSTAL DISPLAY

void loop()
{
if(last>text.length()+15) last=1; //set first column of substring
if(last<17) first = 0; //substring<17 characters, start character =0
else first = last-16; //substring>=17 chars, start char = last-16
if(last>16) col = 0; // substring>16 characters, start column = 0
else col = 16-last; //substring<=16 chars, start col =last-16
lcd.setCursor(col,row); // setcursor position
lcd.print(text.substring(first, last)); //printsubstring
last = last +1; // increment last
delay(250); // delay 250ms

The if else instruction is more efficient than two if() instructions
and is used when there is more than one condition, each with a different
outcome. For example, if there are four mutually exclusive conditions,
each with separate outcomes, then the following “instructions”

if (condition A is true) outcome A
else if (condition B is true) outcome B
else if (condition C is true) outcome C

else outcome D // if conditions A, B and C are not true, then outcome D
are more efficient than the four “instructions”:

if (condition A is true) outcome A
if (condition B is true) outcome B
if (condition C is true) outcome C
if (condition D is true) outcome D

When an else if condition is true, the sketch moves to the next
instruction, rather than checking all the remaining else instructions, which
is more efficient than checking each if() instruction in a series of 1f()
instructions. For example, if condition B were true, then condition C would
not need to be checked.

86



CHAPTER 4  LIQUID CRYSTAL DISPLAY

The text. length() function determines the length of the string fext.
The text.substring(first, last) function creates a substring consisting
of characters first to last of the string text.

LCD with 12C Bus
’ The Inter-Integrated Circuit (I2C) bus is used for

communication between a microcontroller and other devices,

such as an LCD. The 12C Two Wire Interface (TWI) bus uses
two signal lines: serial data (SDA) and serial clock (SCL), irrespective of the
number of devices. The microcontroller communicates with all devices
and the message includes the address of the device to be communicated
with, so that only the relevant device responds to the microcontroller. One
pair of Arduino 12C pins are A4 for SDA and A5 for SCL. An 12C bus
reduces the number of Arduino input pins to communicate with an LCD
from six to two. The LCD screen contrast is controlled using an 12C bus
potentiometer. The jumper at the end of the I2C bus can be disconnected
to turn off the LCD backlight. Chapter 11 includes more information on
12C communication.

The microcontroller requires the hexadecimal address of the I12C

bus to communicate with the 12C bus. I2C addresses for sensors and
modules are available at https://learn.adafruit.com/i2c-addresses/
the-1ist. Listing 4-3 displays the address of all 12C devices connected
to the Arduino. On transmitting to an I2C device, the device returns “0”
to indicate a successful transmission, while, for example, a return of “4”
indicates an error. The I2C addresses 0x00 to 0x07 and 0x78 to 0x7F are
reserved, so are not scanned to detect an I2C device.

87


https://learn.adafruit.com/i2c-addresses/the-list
https://learn.adafruit.com/i2c-addresses/the-list

CHAPTER 4  LIQUID CRYSTAL DISPLAY

Listing 4-3. 12C Addresses

#include <Wire.h>
int device = 0;

void setup()

{
Serial.begin (9600);
Wire.begin();
for (int i=8; i<120; i++)
{

Wire.beginTransmission (i);

// include Wire library
// set device counter to 0

// set Serial output baud rate
// start12C bus
// scan through channels 8 to 119

// transmit to device at address i

if (Wire.endTransmission () == 0) //device response to transmission

{

Serial.print("Address 0x");
Serial.println(i, HEX);
device++;
delay(10);
}
}
Serial.print(device);

Serial.println(" device found");

}

void loop()
{3

// print to screen "Address 0x"

// print to screen I12C address in HEX
// increment device count

// delay 10ms

// print to screen device count

// print to screen " device found"

// nothing in void loop() function

I2C with Temperature and Pressure Sensor

To illustrate connecting more than one I12C device to the
Arduino, temperature and pressure are displayed on the LCD,

with readings from a BMP280 sensor, which can communicate
with the Arduino with either I12C or SPI (see Chapter 11 for
details). The BMP280 sensor measures temperature between

88



CHAPTER 4  LIQUID CRYSTAL DISPLAY

-40°C and 85°C with an accuracy of +0.01°C and pressure with an accuracy
of £0.12hPa, equivalent to +1m in altitude. There are several libraries
available for the BMP280 sensor. The sketch uses the Adafruit BMP280 and
Adafruit Unified Sensor libraries, which are included in the Arduino IDE
and installed using installation method 3, as outlined in Chapter 3.

The BMP280 sensor operates at 3.3V, so a logic level converter (LLC) is
required to reduce the voltage of the transmitted signal from the Arduino,
which operates at 5V. On the low voltage side, the logic level converter TX
and RX pins are connected to the BMP280 SDI and SCK pins, respectively
(see Figure 4-3). On the high voltage side, the logic level converter TX and
RX pins are connected to the Arduino I12C pins A4 (SDA) and A5 (SCK),
respectively. The BMP280 SDO pin should be connected to GND. The 12C
address of the BMP280 sensor is 0x76, as the SDO0 pin is pulled to GND, but
otherwise, the default 12C address is 0x77.

fritzing

Figure 4-3. LCD with I12C bus and BMP280 sensor

89



CHAPTER 4  LIQUID CRYSTAL DISPLAY

The LiquidCrystal_I2C library by Frank de Brabander is included in
the Arduino IDE and is installed using installation method 3, as outlined in
Chapter 3. In the Arduino IDE, select Sketch » Include Library » Manage
Libraries. Enter LiquidCrystal_I2C. Click More Info. Select the latest version
and click Install.

After connecting the 12C bus and BMP280 sensor (see Table 4-3), the
sketch (see Listing 4-4) includes the Wire and LiquidCrystal_I2C libraries,
the I2C bus address, which is 0x3F, and initializes the LCD. The sketch
displays the current time, temperature, and pressure, with the initial
hour and minutes entered through the serial monitor buffer. The while
(Serial.available() > 0) instruction ensures that the entire serial
buffer is read. The Serial.parselnt()instruction extracts integers from
the serial buffer by waiting until a non-numeric value enters the serial
buffer and then converts the previous numeric values into an integer. In
the sketch, the comma following hour and the carriage return following
minutes are the required non-numeric values of the Serial.parseInt()
function.

A similar instruction, Serial.parseFloat(), extracts real numbers
from the serial buffer. In the sketch, the void setup() function prints
constant text to the LCD, while updating of the time, temperature, and
pressure occurs in the void loop() function.

90



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Table 4-3. Connections for LCD with 12C Bus and BMP280 Sensor

Component Connect to and to

12C bus GND LLC high voltage GND Arduino GND
12C bus VCC LLC high voltage 5V Arduino 5V
12C bus SDA LLC high voltage TX Arduino A4
12C bus SCL LLC high voltage RX Arduino A5
BMP280 VCC LLC low voltage 3.3V Arduino 3.3V
BMP280 GND LLC low voltage GND

BMP280 SDI LLC low voltage TX

BMP280 SCK LLC low voltage RX

BMP280 SDO LLC low voltage GND

Listing 4-4. 1.CD with 12C Bus and BMP280 Sensor

#include <Wire.h> // include Wire library
#include <LiquidCrystal I2C.h> // include LiquidCrystal_I2C library
int I2Caddress = 0x3F; // 12C address of 12C bus
int LCDcol = 16; // number of LCD columns
int LCDrow = 4; // number of LCD rows
LiquidCrystal I2C lcd(I2Caddress,LCDcol,LCDrow); //12C address

// and LCD size
#include <Adafruit_Sensor.h> // include Unified Sensor library
#include <Adafruit_BMP280.h> // include BMP280 library
Adafruit BMP280 bmp; // associate bmp with Adafruit BMP280 library
int BMPaddress = 0x76; // 12C address of BMP280

int sec = 0;
int min, hour;
float temp, pressure;

91



CHAPTER 4  LIQUID CRYSTAL DISPLAY

void setup()

{
lcd.init(); // initialise LCD
bmp.begin(BMPaddress); // initialise BMP280 sensor
Serial.begin(9600); // define Serial output baud rate
Serial.print("Enter time as hh,mm"); // print text to screen
lcd.setCursor(0,0); // move cursor to column 1 row 1
lcd.print("Current"); // print "Current" to LCD
lcd.setCursor(0,1); // move cursor to column 1 row 2
led.print("time"); // print "time" to LCD
lcd.setCursor(0-4,2); // move cursor to column 1 row 3
led.print("temp"); // and reduce col by 4 for 3rd and 4th rows
lcd.setCursor(0-4,3); // move cursor to column 1 row 4
lcd.print("pres");
}
void loop()
{
while (Serial.available()>0) // read data in Serial buffer
{
hour = Serial.parseInt(); // first integer in Serial buffer is hours
min = Serial.parseInt(); // second integer in buffer is minutes
}
Sec+t+; // short for sec =sec + 1
if(sec>59) // increase minutes when seconds = 60
{
sec = 0; // reset seconds to 0
min++; // increase minutes by 1
}
if(min>59) // increase hours when minutes = 60
{
min = 0; // reset minutes to 0
hour++; // increase hours by 1
}

92



CHAPTER 4  LIQUID CRYSTAL DISPLAY

if(hour>23) hour = 0; // set hours to 0 when hours = 24
lcd.setCursor(6, 1); // move cursor to column 6 row 2
if(hour < 10) lcd.print(" "); // spacing for hours < 10
lcd.print(hour); // print hour to LCD
led.print(":"); // print ":" to LCD

if(min<10) lcd.print("0"); // leading zero for minutes < 10
lcd.print(min); // print minutes to LCD
led.print(":");

if(sec<10) lcd.print("0"); // leading zero for seconds < 10
lcd.print(sec); // print seconds to LCD

temp = bmp.readTemperature(); // read temperature from sensor
pressure = bmp.readPressure()/100.0; //read pressure from sensor
lcd.setCursor(6-4,2); // move cursor to column 6 row 3
lcd.print(temp, 1); // print temperature to LCD to 1DP
lcd.print(char(178)); // print degree character to LCD
led.print("C");

lcd.setCursor(6-4,3); // move cursor to column 6 row 4
lcd.print(pressure, 1); // print pressure to LCD to 1DP
led.print(" hPa");

delay (1000); // delay 1000ms

16x4 LCD Cursor Positioning

The 16x4 LCDs have different starting addresses for the third and fourth
rows than 20x4 LCDs for which the LCD library was written. To position
the cursor at column N in the third row requires the 1cd.setCursor(N-4, 2)
instruction instead of 1cd. setCursor (N ,2) and similarly for the fourth
row. The effect is demonstrated for a 16x4 LCD (see Listing 4-5).

93



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Listing 4-5. Cursor Position on 16x4 LCD

#include <Wire.h> // include Wire library
#include <LiquidCrystal I2C.h> // include LiquidCrystal_12C
int I2Caddress = 0x3F; // address of I12C bus

int LCDcol = 16; // number of LCD columns
int LCDrow = 4; // number of LCD rows

LiquidCrystal I2C lcd(I2Caddress,LCDcol,LCDrow);

void setup()

{
led.init(); // initialize the lcd
}
void loop()
{
for (int col=0; col<16; col++)
{
lcd.clear(); // clear the LCD
lcd.setCursor(col,0); // first row
led.print("A");
lcd.setCursor(col,1); // second row
lcd.print("B");
lcd.setCursor(col-4,2); // reduce col by 4 in the third row
led.print("C");
lcd.setCursor(col-4,3); // reduce col by 4 in the fourth row
lcd.print("D");
delay(500);
}
}

94



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Further, when a string longer than 16 characters is written to the first
and second rows of the 16x4 LCD, characters 17 onward are displayed on
the third and fourth rows. For a long string, printing a substring of at most
16 characters on a 16x4 LCD is recommended.

Display Entered Values on LCD

Data entry from the keyboard, through the serial monitor, can be displayed
on the LCD. The lcd.write() instruction is used to display alphanumeric
characters on the LCD rather than 1cd.print(). When a character in the
serial monitor buffer is read by Serial.read(), the lcd.print(Serial.
read() )instruction displays the ASCII (American Standard Code for
Information Interchange) code of the character, while 1cd.write(Serial.
read()) converts the ASCII code to display the alphanumeric character,
provided that the No line ending option is selected on the serial monitor.
The sketch (see Listing 4-6) displays on the LCD the characters entered on
the keyboard through the serial monitor buffer.

Listing 4-6. Display on LCD Characters Entered on Keyboard

#include <Wire.h> // include Wire library
#include <LiquidCrystal I2C.h> //include LiquidCrystal _I2C library
int I2Caddress = Ox3F; // address of 12C bus
int LCDcol = 16; // number of LCD columns
int LCDrow = 4; // number of LCD rows
LiquidCrystal I2C lcd(I2Caddress,LCDcol,LCDrow); //I12C address
// and LCD size
void setup()
{
led.init(); // initialize LCD
Serial.begin(9600); // define Serial output baud rate
}

95



CHAPTER 4  LIQUID CRYSTAL DISPLAY

void loop()

{
if (Serial.available()>0) // if data in Serial input buffer
{
lcd.clear(); // clear the LCD
while (Serial.available()>0) lcd.write(Serial.read());
} // read and display input buffer
}

The if (Serial.available()) instruction determines if there
are characters in the serial input buffer and the while (Serial.
available() > 0) instruction ensures that all the buffer is read, as
Serial.read() reduces the serial buffer by one character at a time. The
lcd.clear()instruction clears the LCD screen and moves the cursor to
position (0, 0).

LCD Character Set

Listing 4-7 displays the 256 possible characters on the 16x4 LCD in
blocks of 64 characters, as the character set of an LCD can differ from the
standard character set associated with an HD44780 controller. The screen
number to display 64 characters is entered on the serial monitor, with
screen number 1 corresponding to character values 0 to 63.

Listing 4-7. Display LCD Character Set

#include <Wire.h> // include Wire library
#include <LiquidCrystal I2C.h> // include LCD with I2C library
int I2Caddress = Ox3F; // 12C address of 12C bus

LiquidCrystal_I2C lcd(I2Caddress,16,4); //12C address and LCD size
int screen = 1;
int j,start;

96



CHAPTER 4  LIQUID CRYSTAL DISPLAY

void setup()

{
lcd.init(); // initialise LCD
Serial.begin(9600); // define Serial output baud rate
Serial.print("Enter screen number 1 to 4");

} // print message to Serial Monitor

void loop()
{ // read screen from Serial buffer
while (Serial.available()>0) screen = Serial.parselnt();

for (j=(screen-1)*4; j<screen*4; j++) //4rows of characters per screen

{

lcd.setCursor(0, (j%4)); // position cursor at start of row
if((j%4)>1) lcd.setCursor(0-4,(j%4)); //reduce col by 4 for rows 3 and 4
start = j*16; // 16 characters per row

for (int i=0; i<16; i++) lcd.print(char(i+start));

} // display characters by row

The calculation j%4 is j modulus 4 or the remainder when j is divided by 4.

A character is displayed on the LCD with the 1cd.print(char(N))
instruction, where N is the binary, decimal, or hexadecimal character
code. For example, the character T has binary, decimal, and hexadecimal
character codes of B01010100, 84, and 0x54, respectively. Tables of
character sets (see Table 4-4) are often formatted with the columns and
rows containing the upper and lower four bits of the character code. For
example, the letter T has upper and lower four bits equal to 0101 and
0100, respectively. ASCII codes with upper bits equal to 0001 are for non-
printing characters and are not included in Table 4-4.

97



CHAPTER 4  LIQUID CRYSTAL DISPLAY

Table 4-4. Upper and Lower Bits of Character Codes

Upper Four Bits
Lower four Bits 0010 0011 0100 0101 0110 0111
0000 space 0 @ P ' p
0001 ! 1 A Q a q
0010 " 2 B R b r
0011 # 3 C S c S
0100 $ 4 D T d t
0101 % 5 E U u
0110 & 6 F Vv f v
0111 ' 7 G W g w
1000 ( 8 H X h X
1001 ) 9 I Y i y
1010 * J Z j z
1011 + : K [ k {
1100 , < L \ I I
1101 - = M ] m }
1110 . > N A n ~
1111 / ? 0 0 DELETE

Additional Characters

An additional eight characters can be created for display on the LCD. The
pixel pattern for a character is defined by an 7x5 array. The columns are
allocated the value of 24, 23, 2%, 2!, and 2°, from left to right, with the seven
row totals equal to the sum of the five columns. Figure 4-4 illustrates
creating the additional characters of a clock and a tick. The row totals

are included in an eight byte array labelled with the additional character

98



CHAPTER 4  LIQUID CRYSTAL DISPLAY

name, for example byte clock[8] = {0, 14, 21, 23, 17, 14, O}.
In the void setup() function, the additional character is allocated a
character number from 0 to 7, for example 1cd.createChar(0, clock)
with the additional character displayed with the 1cd.write(number)
instruction. The additional characters of a clock, a tick, and a cross are
created and displayed in Listing 4-8.

clock total tick total

16 8 4 2 1 16| 8| 4| 2| 1
0 0
14 1
21 3
23 22
17 28
14 8
0 0

Figure 4-4. Additional characters

Listing 4-8. Additional Characters

#include <Wire.h> // include Wire library
#include <LiquidCrystal I2C.h> // include LCD with I2C library
int I2Caddress = 0x3F; // 12C address of 12C bus
LiquidCrystal I2C lcd(I2Caddress,16,4); //12C address and LCD size

byte clock[8] = {0, 14, 21, 23, 17, 14, 0}; //clock pixel pattern
byte tick[8] = {0, 1, 3, 22, 28, 8, 0}; // tick pixel pattern
byte cross[8] = {0, 27, 14, 4, 14, 27, 0}; //cross pixel pattern

void setup()

{
lcd.init(); // initialise LCD
lcd.createChar(o, clock); // create character 0 named clock
lcd.createChar(1, tick); // create character 1 named tick

99



CHAPTER 4  LIQUID CRYSTAL DISPLAY

lcd.createChar(2, cross); // create character 2 named cross
lcd.setCursor(0,0); // position cursor
for (int i=0;i<3;i++) lcd.write(i); //display new characters

}
void loop() // nothing in void loop()

{}

Summary

The liquid crystal display (LCD) displayed sensor data. The LCD contrast
is controlled by a potentiometer or by pulse width modulation (PWM)
with a capacitor. Text messages were scrolled across the LCD, rather than
only static text display. An I2C bus was used to communicate between
the Arduino and the LCD. The character set and cursor positioning of

a 16x4-pixel LCD were described with creating additional characters.
Programming included parsing data from text entered on the keyboard
through the serial monitor buffer.

Components List

e Arduino Uno and breadboard

o LCD display: 16x4pixels

e I2Cbus for LCD

e Potentiometer: 10kQ

e (Capacitor: 100pF

e Temperature sensors: LM35DZ and BMP280

e Logiclevel converter

100



CHAPTER 5

7-Segment LED
Display

Numbers and characters displayed on electronic devices use

modules of seven LEDs with an eighth LED for the decimal

point. Conventions for labelling the LEDs are a, b, ... gor A,

B, ... G, with the decimal point denoted P or DP. There are 10
pins on the 7-segment display with pins 1 to 5 corresponding to LEDs e, d,
common, ¢, and P with pins 6 to 10 mapping to LEDs b, a, common, f, and g.
The two common pins, 3 and 8, are connected to a common cathode or
common anode (see Figure 5-1).

oleH-N-N-

.ed°°'“.cl-;'

g f com a b

Figure 5-1. 7-segment LED display

© Neil Cameron 2019 101
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_5



CHAPTER 5  7-SEGMENT LED DISPLAY

To determine if a 7-segment display has a common cathode or
common anode, the negative center of a lithium battery can be held
against the common pin and the positive top of the battery to another pin.
If one of the LEDs turns on, the 7-segment display has a common cathode.
The Chapter uses 7-segment displays with a common cathode, so that an
LED is on when the signal to the LED is HIGH.

Basic Schematic

Each LED is connected to an Arduino pin, which is set to HIGH or LOW.
The number fwo is displayed by setting the pins that control LEDs a, b, d, e,
and g to HIGH with the pins for LEDs c and f'set to LOW. As an example, the
sketch (see Listing 5-1) alternately displays the numbers two and six. The
blue-yellow color-coding of the connecting wires in Figure 5-2 is only to aid
following connections between Arduino pins and the 7-segment display.
The instructions at the start of Listing 5-1 detail connections between the
Arduino pins and the 7-segment display, with Arduino GND connected to a
220Q resistor and then to the common pin of the 7-segment display.

102



CHAPTER5  7-SEGMENT LED DISPLAY

fritzing
Figure 5-2. 7-segment LED display
Listing 5-1. 7-Segment LED Display
int pinA = 2; // yellow wire to display LED a
int pinB = 3; // blue wire to display LED b
int pinC = 4; // yellow wire to display LED c
int pinD = 5; // blue wire to display LED d
int pinE = 6; // yellow wire to display LED e
int pinF = 7; // blue wire to display LED f
int pinG = 8; // yellow wire to display LED g

void setup()
{
pinMode (pinA, OUTPUT); // define LED pins as output
pinMode (pinB, OUTPUT);
pinMode (pinC, OUTPUT);
pinMode (pinD, OUTPUT);

103



CHAPTER 5  7-SEGMENT LED DISPLAY

pinMode (pinE, OUTPUT);
pinMode (pinF, OUTPUT);
pinMode (pinG, OUTPUT);

}

void loop()

{
digitalWrite(pinA, HICH); //display number two
digitalWrite(pinB, HIGH);
digitalWrite(pinC, LOW);
digitalWrite(pinD, HIGH);
digitalWrite(pinE, HICH);
digitalWrite(pinF, LOW);
digitalWrite(pinG, HICH);
delay(1000);
digitalWrite(pinA, HICH); //display number six
digitalWrite(pinB, LOW);
digitalWrite(pinC, HICH);
digitalWrite(pinD, HIGH);
digitalWrite(pinE, HICH);
digitalWrite(pinF, HIGH);
digitalWrite(pinG, HICH);
delay(1000);

Defining each LED pin, each LED pinMode as OUTPUT, the state of
each LED pin and each digitalWrite() in separate instructions is not
necessary. The LED pins and their states, 1 or 0 instead of HIGH or LOW,
can be defined in arrays with for () loops to set the LED states and the
digitalWrite() instructions. Listing 5-2 is substantially shorter and easier
to understand than Listing 5-1.

104



CHAPTER 5  7-SEGMENT LED DISPLAY
Listing 5-2. 7-Segment LED Display

int LEDs[] = {2,3,4,5,6,7,8}; // define LED pins
int two[] = {1, 1, 0, 1, 1, 0, 1}; //LED states to display number two
int six[] = {1, 0, 1, 1, 1, 1, 1}; //LED states to display number six

void setup()

{ // define LED pins as OUTPUT
for (int i = 0; i<7; i++) pinMode (LEDs[i], OUTPUT);

}

void loop()

{ // display number two
for (int i = 0; i<7; i++) digitalWrite(LEDs[i], two[i]);
delay(1000); // display number six
for (int i = 0; i<7; i++) digitalWrite(LEDs[i], six[i]);
delay(1000); // delay 1s

}

PWM and LED Brightness

When an LED is turned on, the 220Q resistor between ground and the
common pin of the 7-segment display (see Figure 5-2) restricts the
current to less than 20mA, given the forward voltage drop of 2V across an
LED, as discussed in Chapter 1. When displaying numbers, the current
per LED is the total current divided by the number of LEDs that are
turned on, as the LEDs are in parallel. To display the number one, the
current through both LEDs will be greater than the current through all
the LEDs used to display the number eight and so the number one will be
brighter. To ensure similar brightness for each number, one option is a
resistor in series with each LED.

105



CHAPTER 5  7-SEGMENT LED DISPLAY

Alternatively, PWM can control the LED brightness of numbers one and
seven, which have only a few LEDs turned on, with analogWrite() instead of
digitalWrite(). The brightness levels of LEDs in the LED state arrays, one
and seven, have the values 0 or 255 x N/7, where N is the number of LEDs
to be turned on. The 7-segment display LEDs a, b and ¢ are now connected
to PWM pins 9, 10 and 11 for the analoghirite() instruction of numbers
one and seven, with LED brightness levels of 73 or 109, respectively. The
other numbers are displayed using digitallWrite(), given that most of the
LEDs are turned on. When an analogWrite() follows a digitalWrite()
instruction, then all the LEDs must be turned off before the analoghirite()
instruction. The sketch (see Listing 5-3) combines digitalWrite() with
analoghrite() and PWM to display numbers one, two, seven, and zero, with
the numbers displayed having similar brightness.

Listing 5-3. Display Numbers Zero, One, Two, and Seven

int LEDpin[] = {9,10,11,5,6,7,8}; //LED pins with PWM for LEDs a, b and c
int one[] = {0,72,72,0,0,0,0}; //LED brightness to display number one
int two[] = {1,1,0,1,1,0,1}; // LED states to display number two

int three[] = {41,1,1,1,0,0,1};

int four[] = {o0,1,1,0,0,1,1};

int five[] = {1,0,1,1,0,1,1};

int six[] = {1,0,1,1,1,1,1};

int seven[] = {109,109,109,0,0,0,0};// LED brightness to display number seven
int eight[] = {1,1,1,1,1,1,1};

int nine[] = {1,1,1,1,0,1,1};

int zero[] = {1,1,1,1,1,1,0};

void setup()

{ // define LED pins as OUTPUT
for (int i = 0; i<7; i++) pinMode (LEDpin[i], OUTPUT);

}

106



CHAPTER 5  7-SEGMENT LED DISPLAY

void loop()

{ // turn off all LEDs
for (int i = 0; i<7; i++) digitalWrite(LEDpin[i],0);
delay(10); // display number one
for (int i = 0; i<3; i++) analogWrite(LEDpin[i], one[i]);
delay(1000); // display number two
for (int i = 0; i<7; i++) digitalWrite(LEDpin[i], two[i]);
delay(1000); // turn off all LEDs
for (int i = 0; i<7; i++) digitalWrite(LEDpin[i],0);
delay(10); // display number seven
for (int i = 0; i<3; i++) analoghrite(LEDpin[i], seven[i]);
delay(1000); // display number zero
for (int i = 0; i<7; i++) digitalWrite(LEDpin[i], zero[i]);
delay(1000); // delay 1s

Shift Register

A shift register, such as a 74HC595, loads a byte, consisting of eight bits,
of data, one bit at a time. An 8-bit number can represent
’ the status of all LEDs in the 7-segment display, rather than
individually declaring the status of each LED. For example,
the number five is displayed by turning on LEDs a, ¢, d, f,
and g and turning off LEDs b and e. If an LED turned off is represented
by 0 with 1 for an LED turned on, then the sequence of 0s and 1s to
display the number five is 1101101 for LEDs g to a, which is equivalent to
the binary number B1101101 or decimal 109 or hexadecimal 0x6D. The
second advantage of the shift register is that only three, rather than eight,

Arduino pins are required to communicate the LED states for the LEDs
(see Figure 5-3 and Table 5-1).

107



CHAPTER 5  7-SEGMENT LED DISPLAY

resistor
220Q

L] Ld L LR ::lr:

LI C
. L B L
a

fritzing
Figure 5-3. 7-segment display and shift register
Table 5-1. 74HC595 Shift Register Pin Layout
Symbol Description Connect to
(B shift register output for LED b 7-segment display pin b
Qc shift register output for LED ¢ 7-segment display pin ¢
(0])] shift register output for LED d 7-segment display pin d
QE shift register output for LED e 7-segment display pin e
QF shift register output for LED f 7-segment display pin f
QG shift register output for LED g 7-segment display pin g
QH shift register output for LED P
GND ground Arduino GND
QH’ output if more than one register

(continued)

108



CHAPTER 5  7-SEGMENT LED DISPLAY

Table 5-1. (continued)

Symbol Description Connect to

SRCLR clear the register when LOW Arduino 5V

SRCLK storage register clock Arduino pin 2 CLOCK
RCLK shift register clock Arduino pin 3 LATCH
OE output enabled when ground Arduino GND

SER serial input for next pin Arduino pin 4 DATA

QA shift register output for LED a 7-segment display pin a
vce 5V supply Arduino 5V

The line above the SRCLR and OF symbols indicate that the pin is
active LOW, rather than the pin being active when the pin state is HIGH.
The shift register pins are numbered 1 to 16, with pins 1, 8, 9 and 16
corresponding to QB, GND, QH’, and VCC. Note that the cut-out at the end
of the 74HC595 shift register indicates the end with pins 1 and 16 or QB
and VCC.

To display the number five, the states of LEDs P and g to a map to the
binary number B01101101 equal to decimal 109.

LEDP LEDg LEDf LEDe LEDd LEDc LEDb LEDa
(0x27) + (1x2°%) + (1x2%) + (0x2%) + (1x2%) + (1x22) + (0x21) + (1x2°) = 109

or hexadecimal conversion

22 x[(0x28) +(1x22)+ (1 x 2D+ (0x29)] +[(1 x2%) + (1 x 22) + (0 x 21) + (1 x 29)]
=2%x 6 + 13, which is hexadecimal 0x6D.

109



CHAPTER 5  7-SEGMENT LED DISPLAY

Hexadecimal is a 2-digit 4-bit representation of an 8-bit binary
number, which is split into upper and lower 4-bit numbers. In the
preceding example, the upper 4-bit binary number is B0110 and the lower
4-bit binary number is B1101. The upper and lower 4-bit numbers are
equal to decimal 6 and 13, respectively, which is denoted as hexadecimal
0x6D, since decimal values 10, 11, 12, 13, 14, and 15 have hexadecimal
representations of A, B, C, D, E, and F. The advantages of hexadecimal are
that numbers up to 256 are represented by two alphanumeric characters
and that an 8-bit binary number can easily be split into two hexadecimal
components.

The shift register loads the state of the first LED, then the state of the next
LED until the states all the LED have been loaded. While the shift register
clock (RCLK or LATCH) is set LOW, the LED states (HIGH or LOW) for LEDs
P and gto a are loaded via the data pin (SER or DATA) into the shift register,
one LED state at a time, controlled by the storage register clock (SRCLK
or CLOCK). After all eight LED states are loaded, the shift register clock
(RCLK or LATCH) is set HIGH and the updated LED states are implemented
simultaneously. Figure 5-4 illustrates the shift register sequentially loading
the LED states to display the number five on a 7-segment display.

110



CHAPTER 5  7-SEGMENT LED DISPLAY

Bd [od el [d [od [o [od P

cear [1L1LILILICIEICT
st = [T ETEIC
sz = el JU NI TEILIEY
snits —1 [O][@[ 11111
snit4 —o [ ][o][e] (111
snits —1 [0] [ ][e][®] [1[1[1L]
site —1 [0] [@][ [o] @] [ ][ ][]
snit7 —o [ ][@][®][ ][®][®] (][]
snits —1 [@][ ][] [@][ ][o][®][ ]

Movement across register

Figure 5-4. Shift register loading

The instructions to pass data through the shift register are

digitalWrite(latchPin, LOW); // set the latch to LOW
shiftOut(dataPin, clockPin, MSBFIRST, number); //LED states as a number
digitalWrite(latchPin, HICH); // setthelatch to HIGH

MSBFIRST indicates that the most significant bit is loaded first, which is
the state of LED P, the LED for the decimal point, which has binary multiple
of 27. For example, the decimal representations of the numbers one, fwo,
and three with the most significant bit first are 6, 91, and 79, with binary
representations of B00000110, B01011011, and B01001111, respectively. The
least significant bit, which is the state of LED a, has a binary multiple of 2°.

If the least significant bit was loaded first, then LSBFIRST would be used in
the shiftOut() instruction. For example, the decimal representations of the

111



CHAPTER 5  7-SEGMENT LED DISPLAY

numbers one, two, and three with the least significant bit first are 96, 218, and
242, with binary representations of B01100000, B11011010, and B11110010,
respectively. So use of MSBFIRST or LSBFIRST must be defined.

A sketch with a shift register to display the numbers zero to nine compared
to the sketch without a shift register only displaying numbers fwo and six
demonstrates the advantage of the shift register (see Table 5-2). Note that in
Figure 5-3, the 74HC595 shift register pins 1 and 16 are on the left-hand side.

Table 5-2. Sketches with and Without a Shift Register

Numbers zero to nine Numbers two and six, only
int clockPin = 2; int pins[ ] = {2,3,4,5,6,7,8,9};
int latchPin = 3; inttwo[] ={1,1,0,1,1,0,1};
int dataPin = 4; intsix[]={1,0,1,1,1,1,1};

int num[ ] = {63,6,91,79,102,109,125,7,127,111};

void setup() void setup()

{ {
pinMode (clockPin, QUTPUT); for (int i=0; i<7; i++)
pinMode (latchPin, OUTPUT); pinMode (pins]i], OUTPUT);
pinMode (dataPin, OUTPUT);

} }

(continued)

112



CHAPTER 5  7-SEGMENT LED DISPLAY

Table 5-2. (continued)

Numbers zero to nine Numbers two and six, only
void loop() void loop()
{ {

for (int i=0; i<10; i++) for (int i=0; i<7; i++)

{ digitalWrite(pins][i], twoli]);
digitalWrite(latchPin, LOW); delay(1000);
shiftOut(dataPin,clockPin,MSBFIRST,num([i]); for (inti=0; i<7; i++)
digitalWrite(latchPin, HIGH); digitalWrite(pins[i], six[il);
delay(1000); delay(1000);

}

} }

The shiftOut() instruction can use binary, decimal or hexadecimal
numbers to represent the LED states in the 7-segment display. For
example, the three instructions to display the number five are equivalent to

shiftOut(dataPin, clockPin, MSBFIRST, B01101101}
or shiftOut(dataPin, clockPin, MSBFIRST, 109}
or shiftOut(dataPin, clockPin, MSBFIRST, 0x6D)

Shift Register, PWM, and LED Brightness

The shift register output enable pin, OE, is normally connected to ground.
If the shift register output enable pin is connected to a PWM pin (see
Figure 5-5), then the brightness of the 7-segment display can be controlled
with PWM.

113



CHAPTER 5  7-SEGMENT LED DISPLAY

LED resistor
220Q

. ZZ:E

sssssssege i i efleses
) o« fle & % w0 re s e e fleeew
« fle g s eflees

.. . L L L

LDR resistor
4.7kQ

fritzing
Figure 5-5. 7-segment display with PWM control

For example, defining the PWM pin with int PWMpin = 11 and in the
void loop() function, inserting the analogWrite(PWMpin, 250 - i*25)
instruction increases the 7-segment display brightness as the display
number increases. The reason for the 7-segment display brightness
increasing as the value of (250 - i*25) in the analogWirite() function
decreases, is that the OF shift register pin is active LOW rather than HIGH.

An application of the display brightness being dependent on incident
light, with a brighter display in lighter conditions, is a digital clock that is
brighter during daylight than at night, as used in Listing 5-4 when numbers
are displayed. The output from a voltage divider with a light dependent
resistor controls the brightness of the seven segment display (see Figure 5-5).
The bright = map(reading, 0, 1023, 255, 0) instruction reverses the

114



CHAPTER 5  7-SEGMENT LED DISPLAY

effect of the Qf shift register pin. The schematic is the same as in

Figure 5-4 with the addition of a voltage divider and light dependent

resistor, with the additional connections given in Table 5-3.

Table 5-3. Connections for Shift Register, Voltage Divider, and

Light Dependent Resistor

Component Connect to and to

LDR right leg Arduino A5

LDR right leg 4.7kQ resistor Arduino GND
LDR left leg Arduino 5V

74HC595 OE pin 13

Arduino pin 11

Listing 5-4. Display Brightness Dependent on Incident Light

int clockPin = 2;
int latchPin = 3;
int dataPin = 4;

// shift register CLOCK pin
// shift register LATCH pin
// shift register DATA pin

int num[] = {63,6,91,79,102,109,125,7,127,111}; // binary for numbers 0 to 9

int Vdivid = As;
int PWMpin = 11;
int reading, bright;

void setup()

{
pinMode (clockPin, OUTPUT);
pinMode (latchPin, OUTPUT);
pinMode (dataPin, OUTPUT);

}

// voltage divider pin
// shift register OE pin used for PWM

// define

// shift register CLOCK pin as output
// shift register LATCH pin as output
// shift register DATA pin as output

115



CHAPTER 5

void loop()

{

for (int i=0; i<10; i++)

{

Alphanumeric Characters

reading = analogRead(Vdivid); //voltage divider reading

7-SEGMENT LED DISPLAY

// for each number 0 to 9

bright = map(reading, 0, 1023, 255, 0); //map readingto LED brightness

analoghrite(PWMpin, bright);
digitalWrite(latchPin, LOW);

digitalWrite(latchPin, HICH); //change number pattern
delay(1000);

// change LED brightness

// set the latch to LOW
shiftOut(dataPin,clockPin,MSBFIRST,num[i]); //LED states as a number

// delay 1s

Decimal representations to display alphanumeric characters for a

7-segment display with a common cathode and the most significant bit

first are given in Table 5-4.

Table 5-4. Decimal Representations of Alphanumeric Characters

Character Number Character Number Character Number Character Number

0 63 A 119 J 30 S 109

1 6 B 124 K 112 T 120

2 91 C 57 L 56 u 62

3 79 D 94 M 21 v 28
(continued)

116



CHAPTER 5  7-SEGMENT LED DISPLAY

Table 5-4. (continued)

Character Number Character Number Character Number Character Number

4 102 E 121 N 84 W 42

5 109 F 113 0 63 X 118
6 125 G 111 P 115 Y 110
7 7 H 118 Q 103 VA 91

8 127 I 6 R 80

9 111 DP 128

Decimal representations of alphanumeric characters can be
determined from an Excel spreadsheet with conditionally formatted cells
representing LEDs set to HIGH or LOW and cell values equal to 1 or 0. For
example, in Figure 5-6, the LEDs turned on to display the number three are
a, b, ¢, d, and g, with LEDs e and fturned off.

F2 | Jr | =B1+C272+C47272+B572/3+A47274+A27 2154837276+ D5 277
Al B |c|o| E F G H [ ) K

1 1 VAL MSBFIRST
0 1 79 01001111

3 1

4alo 1 0 63 A 119 N 84

5 1 0 16 B 12 o 6

6 2 9 c| 57 P 115

7 3 7 D 94 Q 103

8 a 102 E| 121 R 80

Figure 5-6. Numeric values of characters with Excel

117



CHAPTER 5  7-SEGMENT LED DISPLAY
The decimal representation of a pattern is calculated from
(Spx27) +(Sg x 26) + (S¢x 2°) + (Se x 2%) + (Sa x 2%) + (Se x 22) + (S x 21) + (S, x 2°)

and S, Sy, S, Sa, S, S S, and Sy are the eight LED states in the 7-segment
display, including the decimal point.

If the 7-segment display has a common anode, then the decimal
representation to display an alphanumeric character is 127 minus the
value in Table 5-4. The decimal representation of the decimal point is 127
when the 7-segment display has a common anode.

Summary

Numbers and characters are displayed on the 7-segment LED display.
LED brightness can be controlled with pulse width modulation, for
characters only requiring a few LEDs. A shift register controlled the LEDs,
reduced the connections to the Arduino Uno and simplified the sketch.
Decimal, hexadecimal, and binary representations of characters are
described.

Components List

¢ Arduino Uno and breadboard

o 7-segment LED display

e Resistors: 220€2 and 4.7k2

o Light dependent resistor (or photoresistor)

o Shift register: 74HC595

118



CHAPTER 6

4-Digit 7-Segment
Display

The 4-digit 7-segment display is an extension of the 1-digit
~ 7-segment display discussed in Chapter 5. As with the

1-digit 7-segment display, there are seven LED segments

on the 4-digit display, labelled a, b, ... gand P or DP. There
are an additional four pins controlling the 4-digit displays. The pin layout
on the 4-digit 7-segment display is illustrated in Figure 6-1 and the order
of the digits from the left-hand side is 1, 2, 3, and 4. The 4-digit 7-segment
display has a common cathode and a digit display is on when the digit pin
state is LOW, which is equivalent to the common pin connected to ground
for the 1-digit 7-segment display.

D1 A F D2 D3 B
2 1 10 9 8 7
| I | | I
L] L] L ] L]
[ | | I |
1 2 3 4 5 6
E D decimal C G D4

Figure 6-1. Pin layout of 4-digit 7-segment display

© Neil Cameron 2019 119
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_6



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Listing 6-1 uses a 4-digit 7-segment display as a timer counting seconds.
Two functions are used with the digit() function turning on the appropriate
digit and the number () function splitting the number of seconds into units,
tens, hundreds, and thousands. The delay of 5ms between displaying digits
prevents flicker, but changing the delay to 250ms illustrates the digit display
pattern of displaying one digit at a time. In Figure 6-2, the wire colored yellow
is to aid following the circuit, with connections in Table 6-1.

Listing 6-1 demonstrates control of the 4-digit 7-segment display.
Inclusion of shift registers reduces the repeated instructions to define LED
states and the digitalWrite() instructions for each number, which is
described later in the chapter.

resistors
220Q

fritzing

Figure 6-2. 4-digit 7-segment display as timer

120



Table 6-1. Connections for 4-Digit 7-Segment Display As Timer

CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Component Connect to and to

4 digit 7 seg pin 1 22042 resistor Arduino pin 6
4 digit 7 seg pin 2 220Q resistor Arduino pin 5
4 digit 7 seg pin 3

4 digit 7 seg pin 4 22042 resistor Arduino pin 4
4 digit 7 seg pin 5 220Q resistor Arduino pin 8
4 digit 7 seg pin 6 Arduino pin 13

4 digit 7 seg pin 7 22042 resistor Arduino pin 3
4 digit 7 seg pin 8 Arduino pin 12

4 digit 7 seg pin 9 Arduino pin 11

4 digit 7 seg pin 10 22042 resistor Arduino pin 7
4 digit 7 seg pin 11 2202 resistor Arduino pin 2
4 digit 7 seg pin 12 Arduino pin 10

Listing 6-1. 4-Digit 7-Segment Display As Timer

int pins[] = {2,3,4,5,6,7,8};
int digits[] = {10,11,12,13};
int zero[] = {1,1,1,1,1,1,0};
int one[] = {0,1,1,0,0,0,0};

int two[] = {1,1,0,1,1,0,1};

int three[] = {1,1,1,1,0,0,1};
int four[] = {0,1,1,0,0,1,1};
int five[] = {1,0,1,1,0,1,1};

// LED pins

// digit control pins
// LED states for zero
// LED states for one

int six[] = {1,0,1,1,1,1,1};
int seven[] = {1,1,1,0,0,0,0};
int eight[] = {1,1,1,1,1,1,1};

int nine[] = {1,1,1,1,0,1,1};

121



CHAPTER6  4-DIGIT 7-SEGMENT DISPLAY

int time, n;
int del = 5; // time delay (ms)
void setup()

{ // define pins and digits as output
for (int i = 0; i<7; i++) pinMode (pins[i], OUTPUT);

for (int i = 0; i<4; i++) pinMode (digits[i], OUTPUT);
}
void loop()
{
time = millis()/1000; // time is number of seconds
digit(o); // digit D1 for thousands
number (time/1000); // number to be displayed
delay(del);
digit(1); // digit D2 for hundreds
number ((time%1000)/100); // modulus(time, 1000)/100
delay(del);
digit(2); // digit D3 for tens
number ((time%100)/10); // modulus(time, 100)/10
delay(del);
digit(3); // digit D4 for units
number (time%10); // modulus(time, 10)
delay(del);
}
void digit(int d) // function to set digit states
{ // turn all digits off
for (int i = 0; i<4; i++) digitalWrite(digits[i], 1);
digitalWrite(digits[d], 0); // digit pin state is LOW, display is on
}

122



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

void number(int n) // function to display numbers
{

if (n==0) for (int i = 0; i<7; i++)
digitalWrite(pins[i], zero[i]);

else if (n==1) for (int i = 0; i<7; i++)
digitalWrite(pins[i], one[i]);

else if (n==2) for (int i = 0; i<7; i++)
digitalWrite(pins[i], two[i]);

else if (n==3) for (int i = 0; i<7; i++)
digitalWrite(pins[i], three[i]);

else if (n==4) for (int i = 0; i<7; i++)
digitalWrite(pins[i], four[i]);

else if (n==5) for (int i = 0; i<7; i++)
digitalWrite(pins[i], five[i]);

else if (n==6) for (int i = 0; i<7; i++)
digitalWrite(pins[i], six[i]);

else if (n==7) for (int i = 0; i<7; i++)
digitalWrite(pins[i], seven[i]);

else if (n==8) for (int i = 0; i<7; i++)
digitalWrite(pins[i], eight[i]);

else if (n==9) for (int i = 0; i<7; i++)
digitalWrite(pins[i], nine[i]);

Functions

The digit() and number () functions in Listing 6-1 are prefixed void as

the functions return no value to the main sketch. If a function returns an
integer or a real number, y, to the main sketch, then the function is prefixed
with int or float, respectively, and the instruction return vy is included
in the function. If a function is passed a string, an integer, or a real number,

123



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

then the instruction includes the variable type with the variable name,
asinvoid digit(int d).For example, Listing 6-2 shows the double
function, which is passed an integer, x, and returns a real number, y.

Listing 6-2. Function to Pass an Integer and Return a Float

float double(int x)
{

float y = 2.0%x;
return y;

}

In Listing 6-1, the number () function uses the modulus of time divided
by 10, 100, or 1000, where modulus (x, y) is the remainder when integer x
is divided by integer y. For example, if time is 1234, the number of tens is
modulus(1234, 100) = 34, which is then divided by 10 to obtain the result of 3,
as the divisor uses integer arithmetic.

The combination of if else instructions is more efficient for multiple
mutually exclusive tests, rather than a series of 1f() instructions, as the
tests can be run simultaneously rather than sequentially. An alternative
to if elseinstructionsis switch case instructions, where the switch
instruction compares the test variable to values in the case instruction and
the corresponding code is carried out. Use of switch case instructions can
be clearer to interpret when there are several instructions within a case;
otherwise, use of if else instructions is sufficient. Note that each case
instruction is closed with a break instruction. The switch case equivalent
of the if else instructions of Listing 6-1 is given in Listing 6-3.

124



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Listing 6-3. Example of Switch Case

switch(n)
{
case O:
for (int i = 0; i<7; i++) digitalWrite(pins[i], zero[i]);
break;
case 1:
for (int i = 0; i<7; i++) digitalWrite(pins[i], one[i]);
break;
case 3:
for (int i = 0; i<7; i++) digitalWrite(pins[i], three[i]);
break;

When only one of two options is to be activated, then an if()
instruction, such as if(x>7) y = y+1, is sufficient. When both options are
required, the following pair of instructions has the same outcome, but the
left-hand side set of instructions is more efficient.

if(x>7) y = y+1; if(x>7) y = y+1;
else y = y-1; if(x<=7) y = y-1;

In contrast to the if() instruction, which operates once, the while()
instruction repeats the outcome continuously as long as the condition
is satisfied, sowhile(condition) outcome is a loop. For example, the
instruction if(1 == 1) Serial.println("test") displays “test” on
the serial monitor once, butwhile(1 == 1) Serial.println("test")
displays “fest” on the serial monitor repeatedly. The if(condition) break
instruction is used to exit from within awhile() loop.

125



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

One Shift Register

A shift register can load the LED states in the 4-digit 7-segment display,
which reduces the number of connecting wires to the Arduino from eight
to three (see Figure 6-3), just as with the 1-digit 7-segment display (see
Figure 5-5). Connections to the shift register and 4-digit 7-segment display
are given in Tables 6-2 and 6-3, respectively.

...............
=3 u LR R R .

-----------------------

....................
oooooooooooooooooooo

fritzing

Figure 6-3. 4-digit 7-segment display with shift register and
temperature sensor

126



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Table 6-2. Connections to 74HC595 Shift Register

Pin Symbol Description Connect to

1 QB shift register output for LED b 4-digit 7-segment display b
2 Qc shift register output for LED ¢ 4-digit 7-segment display ¢
3 QD shift register output for LED d 4-digit 7-segment display d
4 QE shift register output for LED e 4-digit 7-segment display e
5 QF shift register output for LED f 4-digit 7-segment display f
6 QG shift register output for LED g 4-digit 7-segment display g
7 QH shift register output for LED P 4-digit 7-segment display P
8 GND ground Arduino GND

9 QH' output if more than one register

10  SRCLR clear the register when LOW Arduino 5V

17 SRCLK storage register clock Arduino pin 4 CLOCK

12 RCLK shift register clock Arduino pin 3 LATCH

13 OE output enabled when ground Arduino GND

14  SER serial input for next pin Arduino pin 2 DATA

15 QA shift register output for LED a 4-digit 7-segment display a
16 VCC 5V supply Arduino 5V

127



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Table 6-3. Connections to 4-Digit 7-Segment Display and

Temperature Sensor
Symbol Description Connect to and to
E LED e 22042 resistor 74HC595 pin 4
D LED d 220Q resistor 74HC595 pin 3
Por DP LED P or DP 220Q resistor 74HC595 pin 7
c LEDc 2202 resistor 74HC595 pin 2
G LED g 220Q resistor 74HC595 pin 6
D4 Digit 4 Arduino pin 13
B LED b 22042 resistor 74HC595 pin 1
D3 Digit 3 Arduino pin 12
D2 Digit 2 Arduino pin 11

LED f 220Q resistor 74HC595 pin 5

LED a 2209 resistor 74HC595 pin 15
D1 Digit 1 Arduino pin 10

LM35DZ GND Arduino GND

LM35DZ OUT Arduino pin A5

LM35DZ VCC Arduino 5V

A temperature sensor, LM35DZ, can be combined with the time display

(see Figure 6-3). The sketch (see Listing 6-4) alternately displays, for a

duration of 5 seconds, the temperature and number of seconds elapsed.
The decimal point for the temperature is incorporated in the digit function

by adding 128 to the value of the number to be displayed. For example,

to display the number fwo without and with a decimal point, the binary

representations are B01011011 and B11011011, corresponding to decimal
values 91 and 219. In Figure 6-3, the brown wire is the connection between
the shift register and the 4-digit 7-segment display for the decimal point.

128



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Listing 6-4. Temperature and Time Display

int
int
int
int
int
int
int
int

dataPin = 2;
latchPin = 3;
clockPin = 4;

// shift register DATA pin
// shift register LATCH pin
// shift register CLOCK pin

digits[ ] = {10,11,12,13}; //4digitpins and "values" of numbers 0 to 9

numbers[ ] = {63,6,91,79,102,
del = 5;

tempPin = A5;

duration = 5000;

unsigned long start;

int

time, n, temp, reading;

void setup()

{

pinMode (dataPin, OUTPUT);
pinMode (latchPin, OUTPUT);
pinMode (clockPin, OUTPUT);

109,125,7,127, 111};

// delay after turning digit on
// temperature sensor pin

// display duration

// define shift register DATA pin as output
// define shift register LATCH pin as output
// define shift register CLOCK pin as output

for (int i = 0; i<4; i++) pinMode (digits[i], OUTPUT);
analogReference (INTERNAL); //set ADC voltage to 1.1V rather than 5V

}

void loop()

{

start = millis();
while (millis()-start<duration)

{

time = millis()/1000;
digit(o, time/1000, 0);
digit(1, (time%1000)/100, 0);
digit(2, (time%100)/10, 0);
digit(3, time%10, 0);

// milliseconds elapsed

// display time

// time in elapsed seconds
// digit D1 for thousands
// digit D2 for hundreds

// digit D3 for tens

// digit D4 for units

129



CHAPTER6  4-DIGIT 7-SEGMENT DISPLAY

reading = analogRead(tempPin);  //temperature reading

temp = 10.0*(reading*110.0)/1023.0; // multiplier to get decimal place
// display temperature

while (millis()-start>duration &% millis()-start<2*duration)

{

digit(1, (temp%1000)/100, 0); // digit D2 for tens

digit(2, (temp%100)/10, 1); // digit D3 for units 1 for DP

digit(3, temp%10, 0); // digit D4 for decimal places
}

}

void digit(int d, int n, int DP)

{ // turn all digits off, digit states are HIGH
for (int i = 0; i<4; i++) digitalWrite(digits[i], 1);
digitalWrite(latchPin, LOW); // add 128 for decimal point
shiftOut(dataPin, clockPin, MSBFIRST, numbers[n]+DP*128);
digitalWrite(latchPin, HIGH); // change display pattern
digitalWrite(digits[d], 0); // turn digit on, digit state LOW
delay(del); // delay del (ms)

}

The order of the instructions in the digit() function is important
to ensure no ghosting of numbers from the previous display. All digits
are turned off before the new display pattern is loaded. If the relevant
digit is turned on before the new number pattern is loaded, then for a
small period of time, the old number pattern is displayed, resulting in the
ghosting of numbers from the previous display.

130



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Two Shift Registers

With two shift registers, the first shift register controls the LED segments

and the second shift register controls the digits, with the second shift

register connected to the first shift register. To display a number on a given

digit of the 4-digit 7-segment display, bit data on the digit to be turned

on and the LED segment pattern of the number to be displayed is loaded

into the storage register of the first shift register. The bit data consists of

more than eight bits, so the additional bits are moved into the second shift

register. Figures 6-4 and 6-5 illustrate loading the bit data to display on
the third digit, B00010110, the number five, with LED segment pattern of

B01101101.

shift 1
shift 2
shift 3
shift 4
shift 5
shift 6
shift 7
shift 8

Clear
-0
=0

-0

*1

-1
-1

*0

First shift register

CeEOEO000EF
({1 o o 2
EOEO00000EF
OEOO000000ER
EOO000000E=
I o o [
OOO0000000E
* OO00000000E

Movement across register

Figure 6-4. 4-digit data loaded into first shift register

131



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

First shift register Second shift register

[E]
2]
]
€]
2]

[olod Bl Bd [od el Ipd [od [od [od B
snito —o [ ][ ][e][@] [1@ILT0] 100101 C1CIC]C
snito—1 [O[ ][ J@I @111 CIOOOOOON
sni11—1 [O][O][ ][] [®][®][1[e] [1L1C1CICICILICT
snitiz—o0 [ ][@][@][ ][ ][®][®I[] [®I[]1C1[]1C1CICIL
suit13—>1 [O][ ][e][@] L1 ][el[e] [1[@I[1C1CICILILT
sit14—1 [O][O] [ ][O][O] (][ 1[®] [oI[][®I[1L1LILIL]
snit1s—o0 [ ][@][@][1[@][O][ ][] [e][eI[ ][e] []1L1LIL]
snitie—1 [@][ ][] [@I[1[e][e][] [1[el[e][ ][] 1[1[]

Movement across register Movement across register

Figure 6-5. 4-digit data “shifted” into shift registers

In Figure 6-6, digits of the 4-digit 7-segment display are connected to
pins QB, QC, QD, and QE of the second shift register and a digit is turned
on when the corresponding shift register pin is LOW. Bit data to only turn
on the third digit is B00010110, as the third digit is connected to pin QD,
set to LOW, and digits 1, 2, and 4, which are connected to pins QB, QC, and
QE, are set to HIGH. The decimal representations of the bit data to turn on
digits, D1, D2, D3, and D4 are 28 (or B11100), 26 (or B11010), 22 (or B10110),
and 14 (or B01110), respectively. Note that in Figure 6-6, the second shift
register is turned upside down to make the schematic more interpretable,
so that the cutout at end of the 74HC595 shift register, which indicates the
end with pins 1 and 16 or QB and VCC, is on the right-hand side.

132



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

pr shift register positioned
upside down

e w seeen sewwe ‘o‘oo R e ees senw
. ssBes ssses wswsw seeen s

. .
e .
.o e

.

. e

. .

.
B K

------------------------------
...............................

fritzing

Figure 6-6. 4-digit 7-segment display with two shift registers

The two shift registers are “daisy chained” together, so that only three
connections are required to the Arduino, rather than the initial 12 when no
shift registers were included. The serial output pin of the first shift register,
pin QH’, is connected to the serial input pin of the second shift register,
pin SER. The storage register clock pins, SRCLK, and the shift register
clock pins, RCLK, of both shift registers are connected together. Figure 6-6
does not include provision for displaying the decimal point. The changes
to connections for the first 74HC595 shift register, when a second shift
register is included, are given in Table 6-4.

133



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

Table 6-4. Change in Connections of First Shift Register Given Second
Shift Register

Pin Symbol Description Connect to

9 QH output if more than one  74HC595 (2) pin 14

register
17 SRCLK  storage register clock Arduino CLOCK pin, 74HC595 (2) pin 11
12 RCLK shift register clock Arduino LATCH pin, 74HC595 (2) pin 12

74HC595 (1) and 74HC595 (2) refer to the first and second shift
register, respectively. The second shift register is connected to the 4-digit
7-segment display and to the first shift register, but not to the Arduino,
other than 5V and GND (see Table 6-5).

Table 6-5. Connections for Second Shift Register

Pin Symbol Description Connect to

17 QB shift register output for digit 1 (D1) 4-digit 7-segment display pin D1
2 QC shift register output for digit 2 (D2) 4-digit 7-segment display pin D2
3 QD shift register output for digit 3 (D3) 4-digit 7-segment display pin D3
4 QE shift register output for digit 4 (D4) 4-digit 7-segment display pin D4
8 GND ground Arduino GND

10 SRCLR clear the register when LOW Arduino 5V

11 SRCLK storage register clock 74HC595 (1) pin 11

12 RCLK  shift register clock 74HC595 (1) pin 12

13 OE output enabled when ground Arduino GND

14 SER serial input for next pin 74HC595 (1) pin 9

16 VCC 5V supply Arduino 5V

134



CHAPTER 6  4-DIGIT 7-SEGMENT DISPLAY

In Listing 6-4, the int digits[] = {10,11,12,13} instruction is
replaced with int digits[] = {28,26,22,14}, which are the decimal
representations of the bit data to turn on digits, D1, D2, D3, and D4. The
digit() function is changed by deleting instructions to turn digits off and
on and a new shiftOut() instruction (in bold) for the second shift register
is included (see Listing 6-5).

Listing 6-5. Second Shift Register Control of Digits

void digit(int d, int n, int DP)
{

digitalWrite(latchPin, LOW);

shiftOut(dataPin, clockPin, MSBFIRST, digits[d]);
shiftOut(dataPin, clockPin, MSBFIRST, numbers[n]+DP*128);
digitalWrite(latchPin, HIGH);

jigitalWrite(digit[d], 0)

delay(del);

Summary

The 4-digit 7-segment LED display presented the time and temperature,
as an extension of the 1-digit 7-segment LED display. Shift registers were
introduced, with one shift register controlling the four digits with the
second shift register controlling the seven LED segments. Functions were
introduced to improve programming efficiency.

135



CHAPTER6  4-DIGIT 7-SEGMENT DISPLAY

Components List

136

Arduino Uno and breadboard
4-digit 7-segment LED display
Resistor: 8x 22002

Shift register: 2x 74HC595

Temperature sensor: LM35DZ



CHAPTER 7

8x8 Dot Matrix Display

The 8x8 dot matrix consists of 64 LEDs with 16 pins
corresponding to eight columns of anodes and eight rows of

cathodes. The label on one side of an 8x8 dot matrix display
usually indicates the side containing pins 1 to 8 (left to right) with the other
side containing pins 9 to 16 (right to left), as shown in Figure 7-1.

R R TTTT

 TTTTTTIT, ( j

Figure 7-1. Pin numbering of 8x8 dot matrix display

Each 8x8 dot matrix has a specific column-row pin combination, such
as in Figure 7-2. For example, pin 1 of the dot matrix used in the chapter
controls LEDs in row 5. The orientation of the pin layout is determined
with a multimeter on the diode setting. Mark a left-hand end pin as pin 1
(there are only two possibilities). Connect the multimeter COM (black) to
pin 1 and the multimeter anode (red) to pin 16. If the LED in row 5
column 8 is turned on, then the 8x8 dot matrix has a common cathode;
otherwise, connect the multimeter anode to pin 1 and the cathode to pin 16.
If the LED in row 5 column 8 is turned on, then the 8x8 dot matrix has a
common anode.

© Neil Cameron 2019 137
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_7



CHAPTER 7  8x8 DOT MATRIX DISPLAY

C8 C7 R2 C1 R4 C6 C4 R1 ow: 1. 2.3 4 8§ B 7 8
e O 0060 OO 6
16151413 121110 9 o—H O FIFeaS
o ¥ €1 £ £1 £] £ £] ¥
RN aRaRaRakans
Connection pins 4 @ AE G Tl ¥R uE a5l g
. o ¥1 £ £] £] £] 7] £] 7]
@ IR AR AR A AR AE AR 3
o Al B I Al SR s a8 5
23 4.5 6T 8 e
}?ooooooo . ® ¥ ¥ ¥ ¥ YTy

R7 C2 C3 R8 C5 R6 R3

Figure 7-2. Pin layout of an 8x8 dot matrix

The letter K (see Figure 7-3) illustrates displaying an alphanumeric
character with an 8x8 dot matrix. An 8-bit binary number represents the
LED states in a row, with a one corresponding to an LED being turned
on. The sixth row of the letter K is represented as B11011100, which has a
decimal value of 220. For an 8x8 dot matrix with a common cathode, an
LED is on when the column (anode) state is HIGH and the row (cathode)
state is LOW.

138



CHAPTER 7  8x8 DOT MATRIX DISPLAY

C1 C2 C3 C4 C5 C6 CT7 C8
SHEL N NONON N N NO
R OG®OOO®O®OO

RRIOOOOO®OOO
R O @ @

R OO O O
RE @@ O @
R7 @ @ O O
Re |@ @ O O

Figure 7-3. LED display of letter K

A pattern is displayed on an 8x8 dot matrix by updating each LED state
in a row, with a short delay between updating each LED and then the next
row is updated, which is termed row scanning. The short delay of 200s, for
example, is faster than the eye can detect and gives the impression that all
the LEDS are on simultaneously. A delay of 200us is equivalent to a display
frequency of 5kHz and the human eye can detect flicker of up to 400Hz. For
the letter K, the LED in row 6 column 3 is off, as the binary representation
of row 6 is B11011100 and the value in the third column of the binary
representation is zero. The rows and columns are numbered from the top
left-hand corner (R, CI), with rows parallel to the pins of the 8x8 dot matrix.

To display a character, the binary representation of the LED pattern
is replaced by the corresponding decimal value. For example, in the third
row of the letter A, LEDs in the first and fifth column are on and the binary
representation of the LED pattern, B10001, has decimal value 17 (see
Table 7-5 at the end of the chapter). The bitRead(binary number, c)
instruction reads the cth bit of the binary number, starting at the least
significant bit (rightmost), which is bit zero. If the bit is equal to one,
then to turn on the LED, Arduino pins controlling the corresponding

139



CHAPTER 7  8x8 DOT MATRIX DISPLAY

column (anode) and row (cathode) of the 8x8 dot matrix display are set

to HIGH and LOW, respectively. Note that if the 8x8 dot matrix display
has a common anode, then an LED is turned on when the corresponding
cathode and anode of the LED are set to HIGH and LOW, respectively. A
time lag of one second is required for each letter to be displayed, which is
achieved with thewhile (millis() < start+1000) instruction with start
equal to the start time that the character is first displayed.

In Figure 7-4, connections to Arduino pins (see Table 7-1) controlling
rows of the 8x8 dot matrix are colored yellow and connections to pins
controlling columns in blue or orange, to aid interpretation of the
schematic. The 220Q resistors are connected to each column pin (anode)
of the 8x8 dot matrix display, as the rows are scanned. Arduino pins A0, Al,
A2, and A3 are referenced as pins 14, 15, 16, and 17, respectively. The 8x8
dot matrix rows (R) and columns (C) are referenced in Figure 7-2.

v 11 K
resistor
220 vevvene EE.E ......

fritzing
Figure 7-4. 8x8 dot matrix display

140



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Table 7-1. Connections to 8x8 Dot Matrix Display

8x8DotMatrixPin 1 2 3 4 5 6 7 8 9 101112 13 14 15 16

8x8 dot matrix R5 R7 C2 C3 R8 C5 R6 R3 R1 C4 C6 R4 C1 R2 C7 C8
Arduino pin 13129 8 117 1017166 5 154 143 2

In Listing 7-1, to display the three letters: A, B, and C, the LED patterns
are defined in the matrix val[3][8], which has three rows, one for each letter,
and eight columns, one for each row of the 8x8 dot matrix display. In the
sketch, pin[] defines the 16 Arduino pins connected to the 8x8 dot matrix
display. In the C programming language, numbering of matrix elements
starts at zero, such that pin[ 1] refers to the second element of the pin[ ]
matrix. The term matrix, a two-dimensional array, includes the term vector,
which is a one-dimensional array. To aid consistency between the sketch and
the 8x8 dot matrix data sheet, the first element of pin[ ] is set to 19, Arduino
pin A5, to shift the other values by one element. For example, in Figure 7-4,
Arduino pin 13 is connected to pin 1 of the 8x8 dot matrix display, which
refers to row 5 of the 8x8 dot matrix display. Therefore, pin[1] is set equal to
Arduino pin 13 and the fifth element of the row[ ] matrix refers to pin[1].

Listing 7-1. Display Letters A, B, and C

// Arduino display pins
int pin[] = {129,13,12,9,8,11,7,10,17,16,6,5,15,4,14,3,2};
// dot matrix display columns
int col[] = {pin[13],pin[3],pin[4],pin[10],pin[6],pin[11],pin[15],pin[16]};
// dot matrix display rows
int row[] = {pin[9],pin[14],pin[8],pin[12],pin[1],pin[7],pin[2],pin[5]};
byte val[3][8] = {4,10,17,17,31,17,17,0, //decimal representation of letter A
15,17,17,15,17,17,15,0, // decimal representation of letter B
14,17,1,1,1,17,14,0}; // decimal representation of letter C
unsigned long start;
bool pixel;

141



CHAPTER 7  8x8 DOT MATRIX DISPLAY

void setup()

{
for (int i=1; i<18; i++) pinMode(pin[i], OUTPUT); // display pins as output
for (int 1=0;i<8;i++) digitalWrite(col[i], LOW); //setanodes LOW, turn off
for (int i=0;i<8;i++) digitalWrite(row[i], HIGH); // set cathodes HIGH,

} // turn off
void loop()
{
for (int n=0; n<3; n++) // display the letters A, B, C
{
start = millis(); // milliseconds elapsed
while (millis() < start+1000) // display time for each letter
for (int r=0; 1<8; 1++)
{
digitalWrite(row[r], LOW); // set cathodes to LOW for each row
for (int c=0; c<8; c++)
{
pixel = bitRead(val[n][r], c); //read cthbitin rth row of nth letter
if(pixel == 1) digitalWrite(col[c], HIGH); //setanode HIGH, LED on
delayMicroseconds(200); // delay between LEDs in a row
digitalWrite(col[c], LOW); // reset anode to LOW, LED off
}
digitalWrite(row[r], HIGH); // reset cathode to HIGH
}
}
}

A total of 16 Arduino pins are required to display patterns on the 8x8
dot matrix display, if shift registers are not used (see Figure 7-4). Just as
with the 4-digit 7-segment display (see Chapter 6), one shift register can
control the columns of the 8x8 dot matrix display with a second shift
register to control the rows of the 8x8 dot matrix display.

142



CHAPTER 7  8x8 DOT MATRIX DISPLAY

One Shift Register

Connection information between an Arduino pin and an 8x8 dot matrix
display pin, which was contained in the col[ ] matrix of Listing 7-1, is now
incorporated in the shift register connections (see Figure 7-5 and Table 7-2).
Only the pin[] and row[ ] matrices are now required in Listing 7-2.

fritzing

Figure 7-5. 8x8 dot matrix display and shift register

143



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Listing 7-2. Display Letters A, B, and C with Shift Register

// Arduino display pins
int pin[] = {19,13,12,9,8,11,7,10,17,16,6,5,15,4,14,3,2};
// dot matrix display rows
int row[] = {pin[9],pin[14],pin[8],pin[12],pin[1],pin[7],pin[2],pin[5]};
byte val[3][8] = {4,10,17,17,31,17,17,0, // decimal representation of letter A
15,17,17,15,17,17,15,0, // decimal representation of letter B
14,17,1,1,1,17,14,0}; // decimal representation of letter C

int dataPin = 2; // shift register DATA pin
int latchPin = 3; // shift register LATCH pin
int clockPin = 4; // shift register CLOCK pin

unsigned long start;

void setup()

{
pinMode (dataPin, OUTPUT); // define shift register DATA pin as output
pinMode (latchPin, OUTPUT); // define shift register LATCH pin as output
pinMode (clockPin, OUTPUT); // define shift register CLOCK pin as output
for (int i=1; i<17; i++) pinMode(pin[i], OUTPUT);  //display pins as

// output
for (int i=0; i<8; i++) digitalWrite(row[i], HIGH); //setcathodes
} // HIGH, turn off
void loop()
{
for (int n=0; n<3; n++) // display the letters A, B, C
{
start = millis(); // milliseconds elapsed
while (millis()<start+1000) // display time for each letter
for (int r=0; r<8; r++) // for each row of a letter

{
digitalWrite(latchPin,LOW);

shiftOut(dataPin, clockPin, MSBFIRST,val[n][r]); //change display
// pattern

144



CHAPTER 7  8x8 DOT MATRIX DISPLAY

digitalWrite(latchPin,HIGH);

digitalWrite(row[r], LOW);
delayMicroseconds(200);
digitalWrite(row[r], HIGH);

// set cathodes LOW, turn LED on
// delay between LEDs in a row
// reset cathodes to HIGH, LED off

Table 7-2. Connections with 8x8 Dot Matrix and Shift Register

Pin Symbol Description Connect to

1 0B shift register output for column 2 8x8 dot matrix pin 3
2 QcC shift register output for column 3 8x8 dot matrix pin 4
3 QD shift register output for column 4 8x8 dot matrix pin 10
4 QE shift register output for column 5 8x8 dot matrix pin 6
5 QF shift register output for column 6 8x8 dot matrix pin 11
6 QG shift register output for column 7 8x8 dot matrix pin 15
7 QH shift register output for column 8 8x8 dot matrix pin 16
8 GND ground Arduino GND

9 QH’ output if more than one register

10 SRCLR  clear the register when LOW Arduino 5V

11 SRCLK storage register clock Arduino pin 4 CLOCK
12 RCLK shift register clock Arduino pin 3 LATCH
13 OE output enabled when ground Arduino GND

14 SER serial input for next pin Arduino pin 2 DATA
15 QA shift register output for column 1 8x8 dot matrix pin 13
16 VCC 5V supply Arduino 5V

145



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Two Shift Registers

A second 74HC595 shift register controls the rows of the 8x8 dot matrix
display, which reduces the number of required Arduino pins to three

(see Figure 7-6). Changes in connections to the first 74HC595 shift register,
when a second shift register is included, are given in Table 7-3.

fritzing

Figure 7-6. 8x8 dot matrix display and two shift registers

146



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Table 7-3. Change in Connections of First Shift Register Given Second

Shift Register
Pin Symbol Description Connect to
9 QH’ output if more than one  74HC595 (2) pin 14
register
117 SRCLK  storage register clock  Arduino CLOCK pin, 74HC595 (2) pin 11
12 RCLK shift register clock Arduino LATCH pin, 74HC595 (2) pin 12

74HC595 (1) and 74HC595 (2) refer to the first and second shift
register, respectively. The second shift register is connected to the 4-digit

7-segment display and to the first shift register, but not to the Arduino
other than 5V and GND (see Table 7-4).

Table 7-4. Connections with 8x8 Dot Matrix and Shift Register

Pin Symbol Description Connect to

1 QB shift register output for row 2 8x8 dot matrix pin 14

2 QC shift register output for row 3 8x8 dot matrix pin 8

3 QD shift register output for row 4 8x8 dot matrix pin 12

4 QE shift register output for row 5 8x8 dot matrix pin 1

5 QF shift register output for row 6 8x8 dot matrix pin 7

6 QG shift register output for row 7 8x8 dot matrix pin 2

7 QH shift register output for row 8 8x8 dot matrix pin 5

8 GND ground Arduino GND

9 QH’ output if more than one register

10 SRCLR  clear the register when LOW Arduino 5V
(continued)

147



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Table 7-4. (continued)

Pin Symbol Description Connect to

11 SRCLK storage register clock 74HC595 (1) pin 11
12 RCLK shift register clock 74HC595 (1) pin 12
13 OE output enabled when ground Arduino GND

14 SER serial input for next pin 74HC595 (1) pin 9
15 QA shift register output for row 1 8x8 dot matrix pin 9
16 VCC 5V supply Arduino 5V

In Listing 7-2, references to pin[ ] and row[ ] are not required, so the
instructions in Listing 7-3 are deleted from Listing 7-2.

Listing 7-3. Deleted Instructions from Listing 7-2

int pin[] = {19,13,12,9,8,11,7,10,17,16,6,5,15,4,14,3,2}

int row[] = {pin[9],pin[14],pin[8],pin[12],pin[1],pin[7],pin[2],pin[5]}
for (int i=1; i<17; i++) pinMode(pin[i], OUTPUT)

for (int i=0; i<8; i++) digitalWrite(row[i], HIGH)

digitalWrite(row[r], LOW)
delayMicroseconds(200)
digitalWrite(row[r], HIGH)

The shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r)) instruction
is added, before the shiftOut(dataPin, clockPin, MSBFIRST,val[n][r])
instruction.

148



CHAPTER 7  8x8 DOT MATRIX DISPLAY

The shiftOut() instruction of Listing 7-2 loads row information into
the first shift register, the added shiftOut() instruction now shifts the row
information from the first shift register to the second shift register and the
column information is then loaded into the first shift register.

The shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r)) instruction
controls the rows of the 8x8 dot matrix display. Row ris turned on by
setting the corresponding cathode to LOW when the shift register loads
the binary representation for the row. For example, to turn on the fifth row,
the binary number B11101111 is loaded into the shift register. However,
itis easier when coding to load the binary value B00010000, which is the
“inverse” of B11101111, and then change bits from one to zero and from
one to zero with the symbol ~. The symbol << moves a bit with value one to
position r with the term (1<<r).

In summary, the shiftOut(dataPin, clockPin, MSBFIRST,
~(1<<r)) instruction generates the inverse of 2" in binary and loads the
value, with the most significant bit first, into the shift register.

With two shift registers, changing the shiftOut(dataPin, clockPin,
MSBFIRST, ~(1<<r)) instruction can transform characters. A reflection,
top to bottom, is obtained by changing MSBFIRST to LSBFIRST.

Characters can be repositioned by adding the loop for (int t=0; t<8;
t++) before start = millis() in the updated Listing 7-2 and changing the
shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r)) instruction to

shiftOut(dataPin, clockPin, LSBFIRST, ~(1<<r)) reflection top to
bottom

or shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r+t)) step-shiftdown

or shiftOut(dataPin, clockPin, MSBFIRST, ~(1<<r-t)) step-shiftup

with the if(r-t+1>0) instruction included before the
digitalWrite(latchPin, LOW) instruction.

149



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Replacing MSBFIRST with LSBFIRST in the shiftOut(dataPin,
clockPin, MSBFIRST,val[n][r]) instruction reflects a character left to
right, when either one or two shift registers are used.

Scrolling Text

In Listings 7-1, 7-2, and 7-3, a row is activated and then the column LEDs,
within the row, are turned on or off, which is row scanning. A 220Q resistor
in series with each column of the 8x8 dot matrix display restricts the current
to control the LED brightness, as with row scanning only one LED in a
column is on at any time. To display a scrolling message with the 8x8 dot
matrix display, the characters must be shifted from right to left rather than
shifted up or down. Therefore, columns, rather than rows, are activated and
the LEDs, within a column, are turned on or off, which is column scanning.
The 220Q resistors are now connected in series with each row of the 8x8

dot matrix display (see Figure 7-7). When shifting characters with column
scanning, the shiftOut(dataPin, clockPin, MSBFIRST, (1<<7+c-t))
instruction does not include the symbol ~, as discussed in the previous
paragraph, as a column is activated by setting the anode to HIGH, in contrast
to row scanning when the cathode was set to LOW.

150



CHAPTER 7  8x8 DOT MATRIX DISPLAY

fritzing

Figure 7-7. 8x8 dot matrix display with column scanning

Listing 7-4 displays a message on the 8x8 dot matrix display with the
characters moving from right to left and the message entered into the serial
monitor buffer with the Serial.available()>0 instruction, as described
in Chapter 4. The Serial.read() instruction reduces the buffer by one
character at a time.

Decimal representations of the uppercase and lowercase characters
are loaded into a data file, rather than the main sketch to aid interpretation
of the main sketch.

151



CHAPTER 7  8x8 DOT MATRIX DISPLAY

To create a data file in the Arduino IDE, select the triangle below the
serial monitor button on the right-hand side of the IDE. Choose New Tab
from the drop-down menu. Enter the title: letters.h. The New Tab, now
titled letters.h, is edited to include the matrices letters[ ], containing
the alphanumeric characters, and val[63][8], which includes the
character decimal representations (see Table 7-5). The character decimal
representations in the val[63][ 8] matrix have a row orientation, which
is changed to a column orientation with the bitRead() instruction and
results stored in the cols[ ] matrix.

When an additional file is included in a sketch, the #include
"filename.h" instruction uses quotation marks rather than the angle
brackets when a library is included in a sketch, as in the #include
"letters.h" instruction.

Listing 7-4. Scrolling Text on 8x8 Dot Matrix Display

#include "letters.h" // include letter data

int dataPin = 2; // shift register DATA pin
int latchPin = 3; // shift register LATCH pin
int clockPin = 4; // shift register CLOCK pin

byte cols[8];

char data;

int n;

unsigned long start;

void setup()

{
Serial.begin(9600); // define Serial output baud rate
pinMode (dataPin, OUTPUT); // define shift register DATA pin as output
pinMode (latchPin, OUTPUT); // define shift register LATCH pin as output
pinMode (clockPin, OUTPUT); // define shift register CLOCK pin as output

}

152



CHAPTER 7  8x8 DOT MATRIX DISPLAY

void loop()

{
while (Serial.available()>0) // message read from Serial Monitor
{
data=Serial.read(); // message read one letter at a time
Serial.print(data);
// decimal representation of letter
for (int lett=0; lett<63 ;lett++) if(data == letters[lett]) n=lett;
for (int i=0; i<8;i++) // convert row to column orientation
{
cols[i]=0; // change to column orientation
for (int j=0; j<8; j++) cols[i]= cols[i] + (bitRead(val[n][j],1)<<]);
}
for (int t=0;t<12;t++) // move character through 12 shifts
{ // across the 8x8 dot matrix display
start = millis(); // elapsed time (ms)
while (millis() - start <60) //60 ms to display character
for (int c=0; c<8; c++) // display with column scanning
{
if(8+c-t>0)
{
digitalWrite(latchPin,LOW); //change display pattern
shiftOut(dataPin, clockPin, MSBFIRST,~cols[c]); //shiftbyone
// column
shiftOut(dataPin, clockPin, MSBFIRST, (1<<7+c-t));
digitalWrite(latchPin,HIGH);
}
}
}
}
}

Matrices with alphanumeric characters and their decimal representations
are contained in the letters.h file (see Listing 7-5).

153



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Listing 7-5. Loading Character Data

char letters[] =
{'A','B','C','D',"E',"F',"G","H","T","3", "K', "L","'M","N', 0", 'P","Q",
YIS, IT U,V T, X, Y, 2,
'a','b','c','d','e',"F','g','h','i','j','k','l','m','n','o','p','q',
II'J'SI)'t'Jlu'J'VI)'W'JIX'J'yI)'Z'J
‘o',"'1','2",'3"','4",'5",'6",'7"',"'8","'9"," "};

byte val[63][8] ={4,10,17,17,31,17,17,0 ... 0,0,0,0,0,0,0,0};

Note that the matrix val[63][8] consists of columns 1 and 3 of
Table 7-5 for alphabetic characters, and column 1 of Table 7-6 for number
characters.

Table 7-5. Decimal Representations of Alphabetic Characters

Decimal Representation Character Decimal Representation Character

4,10,17,17,31,17,17,0, 1A 0,0,6,8,14,9,14,0, /la
15,17,17,1517,17,15,0, //B 1,1,13,19,17,19,13,0, /I1'b
1417,1,1,1,17,14,0, /IC 0,0,6,9,1,9,6,0, /lc
7,9,17,17,17,9,7,0, /I D 16,16,22,25,17,25,22,0, //d
31,1,1,15,1,1,31,0, II'E 0,0,6,9,7,1,14,0, /e
31,1,1,15,1,1,1,0, II'F 4,10,2,7,2,2,2,0, It
14,17,1,13,17,25,22,0, /G 0,0,6,9,9,6,8,7, /g
1717,17,31,1717,17,0, //H 1,1,13,19,17,17,17,0, /II'h
7,2,2,2,2,2,7,0, A 1,0,1,1,1,1,2,0, /i
28,8,8,8,8,9,6,0, IJ 4,0,6,4,4,4,4,3, I
17,9,5,3,5,9,17,0, 11K 1,1,9,5,3,5,9,0, Ik
(continued)

154



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Table 7-5. (continued)

Decimal Representation Character Decimal Representation Character

1,1,1,1,1,1,15,0, e 3,2,2,2,2,2,2,0, 1

17,27,21,211717,17,0, //M 0,0,21,43,41,41,41,0, /I'm
17,19,19,21,25,25,17,0, //N 0,0,13,19,17,17,17,0, /I'n
1417171717,17,14,0, //0 0,0,6,9,9,9,6,0, /o
15,17,17,151,1,1,0, /II'P 0,0,13,19,19,13,1,1, IIp
14,17,17,17,21,9,22,0, /11Q 0,0,22,25,25,22,16,16, I1q
15,17,17,15,5,9,17,0, /IR 0,0,13,19,1,1,1,0, INr

14,17,1,1416,17,14,0, II'S 0,0,14,1,6,8,7,0, Il's
31,4,4,4,4,4,40, /A 0,2,7,2,2,2,4,0, It

1717171717,17,14,0, //U 0,0,17,17,17,25,22,0, /l'u
17,17,17,17,10,10,4,0, A 0,0,17,17,17,10,4,0, v
1717,17,21,21,2717,0, //W 0,0,17,17,21,21,10,0, II'w
17,17,10,4,10,17,17,0, 11X 0,0,17,10,4,10,17,0, 1'%
17,17,17,10,4,4,4,0, Iy 0,0,9,9,9,14,8,6, Iy
31,16,8,4,2,1,31,0, Iz 0,0,15,8,6,1,15,0, Iz

155



CHAPTER 7  8x8 DOT MATRIX DISPLAY

Table 7-6. Decimal Representations of Numeric Characters

Decimal Representation Number
14,17,25,21,19,17,14,0, /10
4,6,4,4,4,414,0, 111
14,17,16,12,2,1,31,0, /]2
14,17,16,12,16,17,14,0, 113
8,12,10,9,31,8,8,0, /14
31,1,1,14,16,17,14,0, /11'5
12,2,1,15,17,17,14,0, /16
31,16,8,4,2,2,2,0, 17
1417,17,1417,17,14,0, 118
14,17,17,30,16,8,6,0, /19
0,0,0,0,0,0,0,0%; /I space
Summary

Alpha-numeric characters were displayed on the 8x8 dot matrix display,
with LEDs activated in rows (row scanning). Message scrolling required
LEDs to be activated in columns (column scanning). Two shift registers

were included to control the row and column LEDs.

Components List

e Arduino Uno and breadboard
e 8x8 dot matrix display
e Resistors: 8x 220Q2

o Shift registers: 2x 74HC595

156



CHAPTER 8

Servo and Stepper
Motors

Servo and stepper motors are used in a variety of applications, such as
robotics, tracking systems, and positioning devices. Servo motors are used
for fast movement to a given angle, while the stepper motors move at a
controlled speed in either continuous rotation or to a specific position. The
servo motor has a feedback mechanism to determine location in contrast to
the stepper motor that is moved incrementally. Servo motors are included in
projects in Chapters 13, 22, and 24 with the stepper motor used in Chapter 9.

Servo Motors

Servo motors, or servomechanism, are used to move
% an armature by a fixed angle. A servo motor is precisely
controlled by the width of a pulsed signal corresponding to
the angle that the servo motor is rotated. The SG90 servo
rotates to angles between 0° and 180° given signals with pulse widths
between 0.5ms and 2.5ms, at intervals of 20ms between pulses. The pulsed
signal is similar to pulse width modulation, described in Chapter 2.
The servo motor has three connections normally colored red for
power, brown or black for ground and orange or white for signal (see

Figure 8-1). A servo motor runs at 5V and can use hundreds of milliamps
during a few milliseconds that the rotor is turning, which is more than

© Neil Cameron 2019 157
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_8



CHAPTER 8  SERVO AND STEPPER MOTORS

the 40mA maximum output of the Arduino pins. Therefore, a servo motor
requires an external power supply, such as a 9V battery. In a circuit with
two power supplies, the 9V battery and the Arduino 5V output, the grounds
of both supplies must be connected together.
Lassovs P ' An 14940V5 voltage regulator reduces the voltage from
- » 9V to 5V and the energy converted to heat is lost through
’/“ Sew the metal surface at the rear of the voltage regulator.
Decoupling capacitors, on both sides of the voltage
regulator, smooth both the voltage supply and the voltage demand.

el

pxmm Arduinag”

capacitor capacitor

fritzing

Figure 8-1. Servo motor

158



CHAPTER 8  SERVO AND STEPPER MOTORS

\ ~ If electrolytic capacitors are used as decoupling

- e capacitors, then the negative terminal of the capacitor,

indicated by a silver strip on the side of the capacitor,

is connected to ground, as the capacitors are polarized. The schematic
in Figure 8-1 uses a L4940V5 voltage regulator and the datasheet
recommends a 0.1pF capacitor, which is 100nF, on the 9V (supply) side and
a 22yF capacitor on the 5V (demand) side (see Table 8-1). The schematic
in Figure 8-1 shows the decoupling capacitors either side of the voltage
regulator to make the layout clearer. In practice, ground pins of the voltage
regulator and decoupling capacitors are aligned to reduce wiring and
space (see Figure 8-2). Note that for the negative pins to align with the
central ground pin of the voltage regulator, the decoupling capacitors face
opposite directions.

In general, motors requiring high current should not be powered
directly by the Arduino, but by an external power source. The maximum
current from Arduino Uno output pins is 40mA, with a maximum current
from all output pins of 200mA. The Arduino Uno 5V pin is not connected
through the microcontroller, so 400mA can be supplied by the 5V pin when
the Arduino is powered by USB, given the limit of 500mA through the USB
interface. The 3.3V pin can supply 150mA, which is the limit of the Arduino
Uno voltage regulator.

159



CHAPTER 8  SERVO AND STEPPER MOTORS

Table 8-1. Connections for Servo Motor

Component Connect to and to

Servo VCC L4940V5 demand Capacitor 22uF positive
Servo GND Arduino GND

Servo signal Arduino pin 11

9V battery positive L4940V5 supply Capacitor 0.1pF positive
9V battery negative Arduino GND

Potentiometer VCC Arduino 5V

Potentiometer signal Arduino pin A1

Potentiometer GND Arduino GND

Capacitor 0.1pF negative Arduino GND

Capacitor 22uF negative Arduino GND

The Servo library by Michael Margolis is built-in to the Arduino IDE, so
does not need to be uploaded. The Servo library utilizes Timer1, which uses
Arduino pins 9 and 10, so these pins cannot be used in a sketch requiring
pulse width modulation. The sketch (see Listing 8-1) rotates a servo motor to
angle x° with the servo.write(x) instruction. Some servo motors can stick
at 0° or at 180°, so a range of angles from 5° to 175° may be more robust.

Listing 8-1. Servo motor

#include <Servo.h> // include Servo library
Servo servo; // associate servo with Servo library
int servoPin = 11; // servo motor pin

void setup()
{

servo.attach(servoPin);  // define servo motor pin to Servo library

}

160



CHAPTER 8  SERVO AND STEPPER MOTORS

void loop()

{
for (int i=0; i<19; i++)
{
servo.write(10 * i); // rotate to angles 0, 10, 20 ... 180
delay(500); // delay 500ms between movements
}
for (int i=8; i>=0; i--)
{
servo.write(20 * i); // rotate to angles 160, 140 ... 0
delay(500); // delay 500ms between movements
}
}

Servo Motor and a Potentiometer

A potentiometer is used to rotate the servo motor to a specific angle, with
the potentiometer output voltage converted to a digital reading by the
Arduino analog-to-digital converter (ADC) (see Figure 8-2). The map()
instruction relates the digital reading from 0 to 1023 to the corresponding
angle between 5° to 175°. The direction of the servo motor rotation can
be changed, with respect to the direction of the potentiometer dial,

by the swapping the voltage supply and ground connections of the
potentiometer. Listing 8-2 shows the updated void loop() function of
Listing 8-1, with the sketch updated by also including definition of the
potentiometer pin, int potPin = A1, and declaring the integer variables

reading and angle.

161



CHAPTER 8  SERVO AND STEPPER MOTORS

voltage regulator L4840VS  o0ne 950

fritzing
Figure 8-2. Servo motor with potentiometer
Listing 8-2. Updated void loop()
void loop()
{
reading = analogRead(potPin); // potentiometer voltage
angle = map(reading, 0, 1023, 5, 175); //map voltage to angle
servo.write(angle); // move servo to angle
delay(10); // delay 10ms
}

162



CHAPTER 8  SERVO AND STEPPER MOTORS

The delay of 10ms after the servo.write() instruction allows the servo
motor time to rotate to required position before the next input from the
potentiometer.

A light source can be detected by attaching a light dependent resistor
(LDR), described in Chapter 3, to the rotor arm of the servo motor and
scanning through 180°, with the LDR measuring the light intensity at each
point on the semicircle (see Listing 8-3). Figure 8-3 shows the connections
of the LDR to an Arduino, based on Figure 8-2, with the light dependent
resistor attached to the rotor arm on top of the servo motor and not a
breadboard. An application of a light sourcing sensor is the orientation of a
solar panel to maximize power generation.

Red, green and black
connected to Arduino 5V,
analog A0 pin and ground

® & & & & 8 & B 0 --Jm L
* o 0 0 ° 00 @ L '.st. L
resistor
LDR 4.7k0
fritzing

Figure 8-3. Connection for LDR
Listing 8-3. Servo Motor with LDR
#include <Servo.h> // include servo library
Servo servo; // associate servo with Servo library
int servoPin = 11; // servo motor pin
int LDRpin = AO; // LDR on analog pin A0
int maxLDR = 0; // maximum LDR reading

int reading, maxAngle;

163



CHAPTER 8  SERVO AND STEPPER MOTORS

void setup()

{
servo.attach(servoPin);  // define servo motor pin to servo library
Serial.begin(9600); // define Serial output baud rate

}

void loop()
{ // scan from angle 0° to 180°
for (int angle=0; angle<190; angle = angle + 10)

{

servo.write(angle); // rotate servo motor
reading = analogRead(LDRpin); // read light dependent resistor
if (reading>maxLDR) // compare reading to maximum
{
maxLDR = reading; // update maximum light reading
maxAngle = angle; // update angle of max light reading
}
delay(50); // delay 50ms between LDR readings
}
Serial.print("Light source at "); //printtextto Serial Monitor
Serial.print(maxAngle); // print angle of incident light
Serial.println(" degrees"); //print"degrees" to Serial Monitor
servo.write(maxAngle); // rotate servo to point at the light source
delay(1000); // delay while pointing at light source
maxLDR=0; // reset maximum light reading
servo.write(0); // rotate to 0°
delay(500); // delay 500ms

164



CHAPTER 8  SERVO AND STEPPER MOTORS

Stepper Motor

A stepper motor is also precisely controllable, but unlike a
servo motor, a stepper motor can revolve continuously and

the rotation speed can be controlled. For a stepper motor,
the number of steps that the motor has to move is defined
rather than the angle of movement. The 28BY]-48 stepper motor is used in
this chapter (see Figure 8-4).

A unipolar stepper motor consists of two pairs of coils, with a common
center connected to 5V, and a coil is activated by connecting the coil to
ground. The coil connecting wires are generally colored blue and yellow
for one coil pair, pink and orange for the other coil pair, and red for the
common center. The stepper motor connecting board includes a ULN2003
chip, to control the coil activation sequence, with four LEDs: A, B, C, and
D, to indicate when the blue, pink, yellow, and orange coils are activated.

165



CHAPTER 8  SERVO AND STEPPER MOTORS

ma
]
b
5
a
£
-
=
o.

fritzing
Figure 8-4. Stepper motor

To control a stepper motor, there are three coil activation sequences:
wave driving, full-step and half-step. Wave driving activates each coil
individually: blue, pink, yellow then orange, and the internal motor shaft
turns by 1/32 of a revolution, as each of the four coils is associated with
eight internal motor positions. Full-step activates two coils simultaneously:
blue and pink, pink and yellow, yellow, and orange, and then orange and
blue, which provides more torque to the stepper motor. The internal motor
shaft again turns by 1/32 of a revolution. Both wave driving and full-step
have four coil activation stages. Given the stepper motor’s internal gearing

166



CHAPTER 8  SERVO AND STEPPER MOTORS

of 63.68:1, the internal motor shaft rotates 2038 = 4 (coil activation stages) x 8
(internal motor positions) x 63.68 (gearing) times with wave driving or full-
step for each rotation of the stepper motor rotor.

Half-step alternately activates one or two coils: blue, blue and pink, pink,
pink and yellow, yellow, and so forth. Half-step provides intermediate torque
compared to wave driving and full-step and the internal motor shaft turns by
1/64 of a revolution on each of eight coil activation stages. With half-step, the
internal rotor shaft rotates 4076 = 8 x 8 x 63.68 times for each rotation of the
stepper motor rotor. Wave drive and full step require at least 2ms between
steps with at least 1ms between steps for half-step.

As with a servo motor, an external power supply is recommended for
the stepper motor and the grounds of the external supply and the Arduino
must be connected. The jumper next to the DC 5-12V power supply on the
stepper motor connecting board can be used to turn on or off the stepper
motor (see Table 8-2).

Table 8-2. Connections for Stepper Motor

Component Connect to and to
Stepper blue wire ULN2003 IN1 Arduino pin 12
Stepper pink wire ULN2003 IN2 Arduino pin 11
Stepper yellow wire ULN2003 IN3 Arduino pin 10
Stepper orange wire ULN2003 IN4 Arduino pin 9
9V battery positive ULN2003 positive

9V battery negative ULN2003 negative Arduino GND
Potentiometer VCC Arduino 5V

Potentiometer signal Arduino pin A1

Potentiometer GND Arduino GND

LED long leg 220Q resistor Arduino pin 6
LED short leg Arduino GND

167



CHAPTER 8  SERVO AND STEPPER MOTORS

The Stepper library originally by Tom Igoe is built-in to the Arduino
IDE, so does not need to be uploaded. The Stepper library supports full-
step. The order of pins on the stepper motor connecting board is IN1,

IN2, IN3, and IN4, which are the connections for the blue and yellow coil
pair and the pink and orange coil pair. In contrast, the ULN2003 stepper
motor driver board configures the pins in coil activation order: blue, pink,
yellow, and orange. The different coil connection and activation orders
are defined in Listing 8-4. This sketch illustrates rotating the stepper
motor half a revolution, then reversing the direction and increasing the
motor speed. The stepper motor rotates at speed S rpm for N steps with
the stepper.setSpeed(S) and stepper.step(N) instructions, where S is
the number of revolutions per minute (rpm) and N is the number of steps,
which is negative when the motor direction is reversed. For example, the
stepper.step(50) and stepper.step(-50) instructions move the stepper
motor 50 steps clockwise and 50 steps counterclockwise, respectively.

Listing 8-4. Stepper Motor with Stepper Library

#include <Stepper.h> // include Stepper library

int blue = 12;

int pink = 11; // coil activation order on ULN2003
int yellow = 10; // blue, pink, yellow, orange

int orange = 9;

int steps = 2038; // steps per revolution

// associate stepper with Stepper library and coil pairing order
Stepper stepper(steps, blue, yellow, pink, orange);
int direct = 1; // direction of rotation
int revTime;
float secs, revs;

void setup()
{

Serial.begin(9600); // define Serial output baud rate
Serial.printIn("rpm time(s) revs"); //printheader to Serial Monitor

}
168



CHAPTER 8  SERVO AND STEPPER MOTORS

void loop()

{
for (int i = 2; i<19; i=i+2) // motor speed from 2 to 18 rpm
{
stepper.setSpeed(i); // set motor speed (rpm)
direct = -direct; // change direction of rotation
revTime = millis(); // set start time (ms)
stepper.step(direct * steps/2); // move number of steps
revTime = millis()-revTime; // time for half revolution (ms)
delay(500); // delay 0.5s
secs = revTime/1000.0; // time (s) to move steps
revs = i*secs/60.0; // check number of revolutions
Serial.print(i);Serial.print("\t"); //printspeed on Serial Monitor
Serial.print(secs);Serial.print("\t"); // printtime
Serial.println(revs,3); // print number of revolutions
}
}

The Accelstepper library, by Mike McCauley, is recommended for
sketches with a stepper motor as it has more functionality than the Stepper
library, such as control of the stepper motor acceleration rate and use of
both half-step and full-step. The Accelstepper library is installed within the
Arduino IDE, using installation method 3, as outlined in Chapter 3. The
stepper motor’s initial speed, acceleration rate and maximum speed can
be set along with the target position.

The Accelstepper library requires the number of coil activation stages to
be defined when initializing the stepper motor, which is four for full-step and
eight for half-step. Listing 8-5 rotates the stepper motor for one revolution
and then reverses the direction to demonstrate control of the acceleration
rate. A rotation is defined as moving from position +P to position 0 and then
to position -P, where P is half the number of steps in a revolution, which
is 1019 for full-step and 2038 for half-step. The maximum rotor speeds for
full-step and half-step are set at 700 and 1400 steps per second, respectively,
which results in the same rpm, given that half-step has double the number

169



CHAPTER 8  SERVO AND STEPPER MOTORS

of steps per revolution than full-step. Note that motor speed with the
AccelStepper library is measured in steps/s, but in rpm with the Stepper
library. To convert rpm to motor speed, in steps/s, use the formula: rpm x
steps = 60 x motor speed, where steps is the number of steps per revolution.
In the example, an acceleration rate of 600 steps/s* maximized the time of
constant acceleration/deceleration with full-step, but with half-step, the
required acceleration rate was 1200 steps/s? given double the number of
steps per revolution.

Listing 8-5. Stepper Motor with Accelstepper Library

#include <AccelStepper.h> // include Accelstepper library

int blue = 12;

int pink = 11; // coil activation order on ULN2003
int yellow = 10; // blue, pink, yellow, orange

int orange = 9;

int fullstep = 4; // number of coil activation stages
int halfstep = 8; // with full-step and half-step
int coil = fullstep; // set to full-step or to half-step

// associate stepper with AccelStepper library and coil pairing order
AccelStepper stepper(coil, blue, yellow, pink, orange);
int steps = (coil/4)*2038; // number of steps per revolution

long last = 0;
int lag = 500; // time (ms) interval for display
int direct = 1; // direction of rotation

float rpm, speed, oldspeed, accel;
int nsteps;

void setup()

{
Serial.begin(9600); // define Serial output baud rate
stepper. setMaxSpeed((coil/4)*700); // maxspeed 700 or 1400 steps/s
stepper.setAcceleration(600); // acceleration rate (steps/s?)

Serial.println("steps rpm accel"); //printheader to Serial Monitor

170



CHAPTER 8  SERVO AND STEPPER MOTORS

void loop()

{

stepper.moveTo(direct*steps/2); //move to position +1019 or +2038

// change direction of rotation

if(stepper.distanceToGo()==0) direct = -direct;
if(millis()>last + lag) // lag time elapsed since last print

{

speed = stepper.speed(); // current motor speed (steps/s)
nsteps = speed*lag/pow(10,3); // steps/s taken during lag time
Serial.print(nsteps);Serial.print("\t"); //display number

// of steps and a tab
rpm = 60.0*speed/steps; // derive rpm
Serial.print(rpm,2);Serial.print("\t"); //display rpm to 2DP
accel = (speed - oldspeed)*1000.0/lag; // derived acceleration

// rate (steps/s?)
Serial.println(accel,0); // display acceleration
oldspeed = speed; // update speed value
last = millis(); // update last print time
}
stepper.run(); // move to new position

}

In Listing 8-5, the stepper.run() instruction moves the motor to a

new position, but if the motor has to move at a different speed then the
stepper.runSpeed() instruction is required. The following are other
Accelstepper instructions.

stepper.currentPosition() determine the current position
stepper.move(N) move N steps, with N positive or negative
stepper.moveTo(N) move to position N
stepper.distanceToGo() determine number of steps to target position
stepper.runToPosition() update motor to move to target position
stepper.setSpeed(N) set constant speed (steps/s)
stepper.runSpeed() update motor to run at new speed (steps/s)

171



CHAPTER 8  SERVO AND STEPPER MOTORS

To move the stepper motor for a fixed time, the stepper.setSpeed()
and delay() instructions are required. To move the stepper motor a
number of steps requires the stepper.move() or stepper.moveTo() and
the stepper.run() instructions. Listing 8-6 provides the replacement void
setup() and void loop() functions of Listing 8-5 to move the stepper with
an initial speed and acceleration to a given position and back again.

Listing 8-6. Move Stepper Motor

void setup()

{
stepper.setSpeed(200);

stepper.setAcceleration(600);
stepper.moveTo(512);

}

void loop()

{
if (stepper.distanceToGo() == 0)

stepper.moveTo (-stepper.currentPosition());
stepper.run();

}

Stepper Motor and a Potentiometer

A potentiometer can be used to rotate the stepper motor at a specific
speed, while the brightness of an LED is also changed (see Figure 8-5,
Table 8-2, and Listing 8-7). The potentiometer output voltage is converted
by the Arduino ADC to a digital value, which is mapped to the motor
speed. The internal motor shaft is moved 256 steps to allow almost
continuous response to changes in the potentiometer output voltage,
rather than responding at the end of a revolution. Every 2038 steps,

which is a complete revolution of the stepper motor rotor with full-step,
the revolution time, rpm, and stepper motor speed are displayed on the

172



CHAPTER 8  SERVO AND STEPPER MOTORS

serial monitor. The minimum and maximum stepper motor rotor speeds,
as defined in rpm, are defined in the sketch and then converted to rotor

'@ Y
4

speeds in terms of steps/s using the map () function.

fritzing

Figure 8-5. Stepper motor and potentiometer

Listing 8-7. Stepper Motor with Potentiometer

#include <AccelStepper.h> // include Accelstepper library

int blue = 12;

int pink = 11; // coil activation order on ULN2003
int yellow = 10; // blue, pink, yellow, orange

int orange = 9;

173



CHAPTER 8  SERVO AND STEPPER MOTORS

int fullstep = 4; // number of coil activation stages

int coil = fullstep; // set number of coil activation stages
// associate stepper with AccelStepper library and coil pairing order

AccelStepper stepper(coil, blue, yellow, pink, orange);

int steps = (coil/4)*2038; //number of steps per revolution

int potPin = A1; // potentiometer pin

int LEDpin = 6; // LED on PWM pin

unsigned long revTime = 0;

float rpmMin = 10.0;

float rpmMax = 21.0; // minimum and maximum speed in rpm

float speedMin = rpmMin*steps/60.0; // andinsteps/s

float speedMax = rpmMax*steps/60.0;

float rpm;

int reading, speed, bright;

void setup()

{
Serial.begin(9600); // define Serial output baud rate
pinMode(LEDpin, OUTPUT);  //LED pin as output
stepper.setMaxSpeed(1500); //set maximum speed (step/s)

}

void loop()
{
reading = analogRead(potPin); // potentiometer voltage
// map voltage to speed (step/s)
speed = map(reading, 0, 1023, speedMin, speedMax);
bright = map(reading, 0, 1023, 0, 255); //map voltage to LED

// brightness
analogWrite(LEDpin, bright); //setLED brightness with PWM
stepper.move(256); // move the internal motor 256 steps
stepper.setSpeed(speed); // set the internal motor speed
stepper.runSpeed(); // run the stepper motor

if((stepper.currentPosition() % steps)==0) //on each complete

// revolution

174



CHAPTER 8  SERVO AND STEPPER MOTORS

revTime = millis()-revTime;

rpm = stepper.speed()*60.0/steps;
Serial.print(revTime);
Serial.print(" ms\t\t");
Serial.print(rpm, 2);
Serial.print(" rpm\t");
Serial.print(stepper.speed(),0);
Serial.println(" steps/s");
delay(2);

revTime=millis();

// time (ms) for one revolution

// stepper motor rpm

// print revolution time

// print "ms " and two tabs

// print rpm with 2DP

// print "rpm" and a tab

// print motor speed with 0DP

// print " steps/s" and a new line
// delay 2ms to prevent duplicates
// update revolution start time

Stepper Motor Gear Ratio

The often quoted gear ratio of 64:1 for the 28BY]J-48 stepper motor
approximates the actual ratio of 63.684:1. The internal gearing consists of
five cogs with gear ratios: motor shaft 31:1, internal A 26:10, internal B 22:9,
internal C 32:11, and rotor shaft 1:9. The overall gear ratio is the product of
the individual gear ratios. The number of steps per revolution with full-
step or with half-step is the overall gear ratio multiplied by the number of
coil activation stages (4 or 8) and the number of internal motor positions
(8), which is 2038 and 4076 steps, respectively.

There are many stepper motors available and the 28BY]J-48 stepper
motor is an example of a unipolar stepper motor, while the NEMA 17 is an
example of a bipolar stepper motor. For unipolar stepper motors, the coils
are activated the same way with the common center always negative, so at
most only half of the coils can be activated at any one time. With bipolar
stepper motors, an H-bridge circuit changes the direction of current at
each coil activation stage, so that all coils can be activated at one time.
Bipolar stepper motors have more torque than unipolar stepper motors,
due to the higher number of activated coils.

175



CHAPTER 8  SERVO AND STEPPER MOTORS

Summary

The angle of rotation of a servo motor was controlled by a potentiometer
and by a light dependent resistor to detect a light source. The speed

and target position of a stepper motor was also controlled with a
potentiometer. The map () function was used to convert the potentiometer
output to motor speed or motor target position.

Components List

e Arduino Uno and breadboard

e Servo motor: SG90

o Stepper motor: 28BY]J-48

e Stepper motor connecting board with ULN2003 chip
e Battery: 9V

e Voltage regulator: 1L.4940V5

e Capacitors: 0.1pF and 22pF

o Potentiometer: 10k

e LED

e Resistor: 220Q2

176



CHAPTER 9

Rotary Encoder

<A A rotary encoder is used to finely control an output, such as
the rotation of a motor, the cursor position on a screen or
simply the brightness of an LED. Rotary encoders are used

as control switches, such as on audio equipment. The rotary
encoder has 20 positions, but the rotor can be continuously
rotated either forward or backward to increase or decrease a control
variable.

There are three pins inside a rotary encoder: a common pin and two
pins, termed A and B, which are offset. As the rotor turns, pins A and B
each make contact with the common pin or are disconnected with the
common pin, which generates square waves of the same frequency, but
a quarter of a cycle, or 90°, out of phase (see Figure 9-1). The number of
pulses of the square waves indicates the extent of the rotation, which can
be measured on either pin A or pin B.

The square wave positions on pins A and B determine the direction
of rotation. If the rotation is clockwise, then pin A makes contact with the
common pin before pin B, so the square wave on pin B will be HIGH at
the falling edge of the square wave on pin A (see Figure 9-1) with the black
vertical line indicating the falling edge of pin A. In contrast, if the square
wave on pin B is LOW at the falling edge of the square wave of pin A, then
the rotation is counterclockwise. The rising edge of the square wave on pin
A can also be used as the time reference point, in which case a LOW value
of the square wave on pin B indicates a clockwise rotation.

© Neil Cameron 2019 177
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_9



CHAPTER9 ROTARY ENCODER

Clockwise

J DT or pin B
] | clKorpinA

Anti-clockwise

T DT or pin B

| T T Lo

Time
Figure 9-1. Rotary encoder square wave

The sequence of pin B and pin A states at a falling edge of the square
wave on pin B with clockwise rotation of the rotary encoder is (LOW,
LOW), (LOW, HIGH), (HIGH, HIGH) and (HIGH, LOW) or 00, 01, 11 and
10. Such a sequence is Gray code, with two successive values differing
by one bit. An increasing binary sequence 00, 01, 10 and 11 can also be
generated by two square waves (LOW, LOW), (LOW, HIGH), (HIGH, LOW)
and (HIGH, HIGH), but the two waves are in phase and the frequency of
the second wave is double that of the first wave (see Figure 9-2).

r
>

Time

Figure 9-2. Square waves for binary counting

178



CHAPTER9 ROTARY ENCODER

The switch on the rotary encoder, activated by pressing down on the
stem of the rotary encoder, can be used to change the state of a binary
variable. In the sketch (see Listing 9-1), pressing the switch turns off an
LED. Pins A and B of the rotary encoder are referenced as the clock (CLK)
and data (DT) pins. The switch (SW) pin of the rotary encoder uses an
internal pull-up resistor, attached to each input pin of the Arduino Uno,
rather than including a separate resistor in the circuit. An internal pull-
up resistor is activated with the digitalWrite(pin, INPUT_PULLUP)
instruction, but the pin is active LOW rather than active HIGH. The rotary
encoder module, KY-040, used in this chapter, includes 10kQ pull-up
resistors on the clock (CLK) and data (DT) pins. An LED is connected to
an Arduino PWM pin for the rotary encoder to control the level of LED
brightness.

The rotary encoder clock (CLK), data (DT), and switch (SW) pins are
connected to Arduino pins A0, A1, and A2 only for convenience of the
schematic (see Figure 9-3 and Table 9-1), as a stepper motor is connected
to the Arduino in Figure 9-4 and Listing 9-2. The Arduino analog pins A0 to
A5 can be utilized as digital pins with the digitalRead(pin) instruction,
with pins A0 to A5 corresponding to pin numbers 14 to 19.

179



CHAPTER9 ROTARY ENCODER

resistor

Rotary encoder

fritzing

Figure 9-3. Rotary encoder and LED

Table 9-1. Connections for Rotary Encoder and LED

Component Connect to and to
Rotary encoder CLK Arduino pin A0

Rotary encoder DT Arduino pin A1

Rotary encoder SW Arduino pin A2

Rotary encoder VCC Arduino 5V

Rotary encoder GND Arduino GND

LED long leg Arduino pin 6

LED short leg 220Q resistor Arduino GND

In Listing 9-1, the encoder () function returns the direction of rotation,
with a value of one for clockwise and minus one for counterclockwise
rotation. The encoder () function waits for a falling edge on pin A with the

180



CHAPTER9 ROTARY ENCODER

if (oldA == HICH && newA == LOW) instruction. The LED brightness is
incremented by the fade amount, which is multiplied by the direction of

rotation of the rotary encoder to increase or decrease the LED brightness.

Pressing the rotary encoder switch turns the LED off by resetting the LED

brightness to zero.

Listing 9-1. Rotary Encoder and LED

int
int
int
int
int
int
int
int
int

CLKpin= A0;

DTpin=
SWpin=
LEDpin
bright
fade =
rotate
oldA =

A1;
A2 ;
= 6;
= 120;
10;
=0,
HIGH;

change, result, newA, newB;

void setup()

{

Serial.begin(9600);
pinMode(LEDpin, OUTPUT);
pinMode(SWpin, INPUT PULLUP);

}

void loop()

{

// pin A or clock pin

// pin B or data pin

// switch pin

// LED on PWM pin

// initial LED value

// amount to change LED
// number of rotary turns

// status of pin A

// define Serial output baud rate
// LED pin as output

// switch pin uses internal pull-up resistor

if(digitalRead(SWpin) == LOW) bright = 0; //switch, active LOW,

change =
rotate
bright
bright

encoder();

// turns off LED
// function for direction of rotation

rotate + abs(change); //number of turns of rotary encoder
bright + change*fade; //change LED brightness
constrain(bright, 0, 255); //constrain LED brightness

181



CHAPTER9 ROTARY ENCODER

if(change != 0)

{ // display number
Serial.print(rotate);Serial.print("\t"); //ofrotaryturns
Serial.println(bright); // and LED brightness

}

analogWrite(LEDpin, bright); // update LED brightness

}

int encoder() // function to determine direction
{

result = 0;

newA = digitalRead(CLKpin); // state of (CLK) pin A

newB = digitalRead(DTpin); // state of (DT) pin B

// falling edge on (CLK) pin A
if (oldA == HICH && newA == LOW) result = 2*newB - 1;
0ldA = newA; // update state of (CLK) pin A
return result;

}

If the void loop() function contains several tasks or delays, then the
microcontroller may miss turns of the rotary encoder by not detecting
all the falling edges on pin A or the CLK pin. For example, inserting the
delay(100) instruction within the void loop() function is sufficient for
the microcontroller to miss turns of the rotary encoder. Implementing
an interrupt resolves the problem of the microcontroller not detecting a
change in state of a device, when there are several tasks or delays in the
void loop() function. The subject of interrupts is discussed in Chapter 20.

Rotary Encoder and Stepper Motor

The rotary encoder can be used to control a stepper motor, which was
outlined in Chapter 8. In the sketch (see Listing 9-2 and Table 9-2), the
stepper motor first moves to an initial position, and then to a target
position determined by the rotary encoder’s direction and number of

182



CHAPTER9 ROTARY ENCODER

turns. When the stepper motor reaches the target position, the direction of
rotation is reversed and the stepper motor moves to the “negative” target
position. The rotary encoder switch resets the stepper motor target to zero.
The maximum speed of the stepper motor is set at 700 steps per minute,
which is equivalent to 20.6 rpm with full-step. An LED is connected to

an Arduino PWM pin, so the rotary encoder controls the level of LED
brightness in parallel with changes to the stepper motor target.

Table 9-2. Connections for Rotary Encoder and Stepper Motor

Component Connect to and to
Stepper blue wire ULN2003 INT Arduino pin 12
Stepper pink wire ULN2003 IN2 Arduino pin 11
Stepper yellow wire ULN2003 IN3 Arduino pin 10
Stepper orange wire ULN2003 IN4 Arduino pin 9
9V battery positive ULN2003 positive

9V battery negative ULN2003 negative Arduino GND
Rotary encoder CLK Arduino pin A0

Rotary encoder DT Arduino pin A1

Rotary encoder SW Arduino pin A2

Rotary encoder VCC Arduino 5V

Rotary encoder GND Arduino GND

LED long leg 220 resistor Arduino pin 6
LED short leg Arduino GND

183



CHAPTER9 ROTARY ENCODER

fritzing

Figure 9-4. Rotary encoder, LED, and stepper motor

Listing 9-2. Rotary Encoder and Stepper Motor

#include <AccelStepper.h>

int
int
int
int
int
int
int

blue = 12;

pink = 11;
yellow = 10;
orange = 9;
fullstep = 4;
halfstep = 8;
coil = fullstep;

// include AccelStepper library
// coil activation order on ULN2003
// blue, pink, yellow, orange

// number of coil activation stages
// with full-step and half-step

// set number of coil activation stages

// associate stepper with AccelStepper library and coil pairing order

AccelStepper stepper(coil, blue, yellow, pink, orange);

int
int
int
int
int

184

stepperTarget = 500;
stepperChange = 200;
CLKpin= A0O;

DTpin= A1;

SWpin= A2 ;

// initial position for stepper motor

// number of steps to move stepper motor
// rotary encoder pin A

// and pin B

// switch pin



CHAPTER9 ROTARY ENCODER

int rotate = 0; // number of rotary encoder turns
int oldA = HIGH; // status of pin A

int direct = 1; // direction of rotation

int LEDpin = 6; // LED on PWM pin

int bright = 60; // initial LED value

int fade = 25; // amount to change LED

int change, result, newA, newB;

void setup()

{
Serial.begin(9600); // define Serial output baud rate
pinMode(SWpin, INPUT PULLUP); //switch pin uses internal pull-up resistor
stepper.setMaxSpeed(700); // maximum speed of stepper motor
stepper.setAcceleration(600); // acceleration rate (steps/s?)

}
void loop()

{
if(digitalRead(SWpin) == LOW)
{
stepperTarget = 0; // switch repositions stepper motor
bright = 0; // and turns off the LED
}
change = encoder(); // determine direction of rotary encoder
rotate = rotate + abs(change); //number of rotary encoder turns

// move stepper motor to new position
stepperTarget = stepperTarget + change * stepperChange;
stepperTarget = constrain(stepperTarget, 0, 2037); //constrain position
bright = bright + change*fade; // change LED brightness
bright = constrain(bright, 0, 255); //constrain LED brightness

185



CHAPTER9 ROTARY ENCODER

if(change != 0)

{
Serial.print(rotate);Serial.print("\t"); //display rotary turn number
Serial.print(bright);Serial.print("\t"); //display LED brightness
Serial.println(stepperTarget); // and new target position

}

analogWrite(LEDpin, bright); // update LED brightness

stepper.moveTo(direct*stepperTarget/2); // move to target position

if (stepper.distanceToGo() == 0) direct=-direct; //reverse direction

stepper.run(); // move stepper motor
}
int encoder() // function to determine direction
{

result = 0;

newA = digitalRead(CLKpin); // state of (CLK) pin A

newB = digitalRead(DTpin); // state of (DT) pin B

// falling edge on (CLK) pin A
if (oldA == HICH && newA == LOW) result = 2*newB - 1;
0ldA = newA; // update state of (CLK) pin A
return result;

}

Summary

The direction and extent of rotation of a rotary encoder is used to control
devices, with an LED and a stepper motor as example devices.

186



CHAPTER9 ROTARY ENCODER

Components List

e Arduino Uno and breadboard

o Rotary encoder: KY-040

o Stepper motor: 28BYJ-48

e Stepper motor connecting board with ULN2003 chip
o Battery: 9V

e« LED

e Resistor: 220Q

187



CHAPTER 10

Infrared Sensor

Infrared (IR) remote controls operate devices, such as
e domestic appliances and office machinery, wirelessly by
transmitting a signal consisting of pulses of infrared light.

When a remote control button is pressed, the infrared
sensor receives a signal, which is decoded to implement the appropriate
action corresponding to the remote control button. For example, if the
“power on” button signal has binary representation B011101, the pulsed
infrared signal would be as shown in Figure 10-1. The infrared wavelength
is not visible to the human eye, but a remote control signal can be
observed when viewed through the camera of a mobile phone.

Figure 10-1. Pulsed signal

The IRremote library by Ken Shirriff is recommended for sketches
with an IR sensor. The IRremote library is available within the Arduino
IDE and is installed using installation method 3, as outlined in Chapter 3.
Connections for the IR sensor are given in Table 10-1.

© Neil Cameron 2019 189
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_10



CHAPTER 10  INFRARED SENSOR

Listing 10-1 reads an infrared signal and displays the hexadecimal
signal code associated with each button of an infrared remote control to
illustrate use of the VS1838B IR sensor.

Listing 10-1. Infrared Signal

#include <IRremote.h> // include IRremote library

int IRpin = 6; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library
decode_results reading; // IRremote reading

void setup()

{
Serial.begin(9600); // set baud rate for Serial Monitor
irrecv.enableIRIn(); // initialise the IR receiver

}

void loop()

{

if(irrecv.decode(&reading)) //read the infrared signal

{

Serial.print("ox"); // print leading 0x for hexadecimal
Serial.println(reading.value, HEX); //print HEX code to Serial Monitor
irrecv.resume(); // receive the next infrared signal

}

delay(1000); // delay before next remote control input

}

Once the pulsed infrared signals for the buttons have been
determined, each button can be associated with a particular function. In
the sketch (see Listing 10-2), three buttons are mapped to turning on one
of three LEDs (see Figure 10-2). Note that the hexadecimal signal codes are
just examples.

190



CHAPTER 10  INFRARED SENSOR

:..-oa—ﬂ'm-l—ﬂ"'"- resistors
lll::l..l-mr-lo. 2200

V518388

.
.
CECECE )
LI B B

. -
L -
.. e
L] .
. .

fritzing

Figure 10-2. Infrared sensor and LEDs

Table 10-1. Connections for IR Sensor and LEDs

Component Connect to and to

IR sensor VCC Arduino 5V

IR sensor OUT Arduino GND

IR sensor GND Arduino pin 6

LED long legs Arduino pins 8, 9, 10

LED short legs 220Q resistors Arduino GND

191



CHAPTER 10  INFRARED SENSOR

Listing 10-2. IR Signal and LEDs

#include <IRremote.h> // include IRremote library

int IRpin = 6; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library
decode_results reading; // IRremote reading

int redLED = 8;

int amberLED = 9; // LED pins
int greenlED = 10;
int color;
void setup()
{
irrecv.enableIRIn(); // initialise the IR receiver

pinMode(redLED, OUTPUT);  //define LED pins as output
pinMode(amberLED, OUTPUT);
pinMode(greenLED, OUTPUT);

}

void loop()
{
if(irrecv.decode(8reading)) //read the IR signal
{
switch(reading.value) // switch ... case for button signals
{ // associate IR codes with LED pins
case OxFF30CF: color = redLED; break;
case OxFF18E7: color = amberLED; break;
case OxFF7A85: color

greenlLED; break;

}
digitalWrite(color,HICH); //turn on and off corresponding LED
delay(1000);
digitalWrite(color,LOW);
}
irrecv.resume(); // receive the next infrared signal
delay(1000); // delay before next remote control input

}
192



CHAPTER 10  INFRARED SENSOR

The IR sensor can also be used to display specific text on an LCD,
based on a remote control button, with the LCD connected to an I2C bus,
as described in Chapter 4. Figure 10-3 is the same as Figure 4-3, with an
infrared sensor replacing the temperature sensor, with connections given
in Table 10-2. The display string in Listing 10-3 is a combination of text
and a number converted to a string using the String(number) function.
The infrared signal is displayed in hexadecimal (HEX) or decimal (DEC)
format, as an illustration.

outnpJy

fritzing
Figure 10-3. Infrared sensor and LCD with I12C bus
Listing 10-3. IR Sensor and Text Display
#include <Wire.h> // include Wire library
#include <LiquidCrystal I2C.h> //include LiquidCrystal_I2C library
#include <IRremote.h> // include IRremote library
int I2Caddress = 0x3F; // address of 12C bus
int LCDcol = 16; // define the number of LCD columns
int LCDrow = 4; // define the number of LCD rows

// associate lcd with LiquidCrystal_I2C library, define LCD address and size

193



CHAPTER 10  INFRARED SENSOR

LiquidCrystal I2C lcd(I2Caddress,LCDcol,LCDrow);

int IRpin = Ao; // IR sensor pin
IRrecv irrecv(IRpin); // associate irrecv with IRremote library
decode_results reading; // IRremote reading

void setup()

{
lcd.init(); // initialise LCD
irrecv.enableIRIn(); // initialise the IR receiver
}
void loop()
{
if(irrecv.decode(&reading)) //read the IR signal
{
translateIR(); // function to map signal to display string
irrecv.resume(); // receive the next infrared signal
delay(1000); // delay before next IR signal
}
}
void translateIR() // function to determine display string
{

switch(reading.value) //switch case rather than a series of if else instructions
{ // string equal to text plus elapsed time
case OxFF6897: displ("Outcome "+String(millis()/1000)); break;
// string equal to signal in hexadecimal
case OXFF30CF: displ("Result "+String(reading.value,HEX)); break;
// string equal to signal in decimal
case OxFF18E7: displ("Event "+String(reading.value,DEC)); break;
default: displ("Not valid"); //defaultdisplay
}
}

194



CHAPTER 10  INFRARED SENSOR

void displ(String s) // function to display string on LCD

{
led.print(s);  //display string on LCD
delay(2000); // delay 2000ms
lcd.clear(); // clear LCD display and move cursor to zero position

}

Table 10-2. Connections for IR Sensor and LCD with I2C Bus

Component Connect to Component Connect to
12C bus GND Arduino GND IR sensor VCC Arduino 5V
12C bus VCC Arduino 5V IR sensor OUT Arduino pin A0
12C bus SDA Arduino A4 IR sensor GND Arduino GND
12C bus SCL Arduino A5

Infrared Emitter and Sensor

Infrared signals can be sent with an IR emitter LED and received by an
infrared sensor, VS1838B, exactly as if the IR signal was generated by a
remote control device. The IR emitter LED must be connected to Arduino
PWM pin 3, when using the IRremote library (see Figure 10-4). Note that the
top of the IR emitter LED must be facing the IR receiver with no obstruction
between the emitter and receiver (see Table 10-3). Information on the signal
to be sent, in a Sony format, and the length of the signal is included in the
irsend.sendSony(signal, signal length) instruction. The example signal
0xFF30CF in hexadecimal format has a signal length of 24 bits, given 4 bits
per integer. The sketch (see Listing 10-4) uses the sendSony () function as an
example format to transmit signals, but other signal formats, such as NEC,
JVC, RC5, and RC6, are included in the IRremote library. More information
on IR codes is available at www. sbprojects.net/knowledge/ir/index.php.

195


http://www.sbprojects.net/knowledge/ir/index.php

CHAPTER 10  INFRARED SENSOR

fritzing

Figure 10-4. IR emitter and receiver

Table 10-3. Connections for IR Emitter and Receiver

Component Connect to and to
IR sensor VCC Arduino 5V

IR sensor OUT Arduino pin 6

IR sensor GND Arduino GND

IR emitter LED long leg Arduino pin 3
IR emitter LED short leg 22042 resistor Arduino GND

The sketch for the IR transmitter to accompany the IR receiver (see
Listing 10-4) uses either the first sketch of the chapter (see Listing 10-1) or
the infrared receiver VS1838B sketch (see Listing 3-10) in Chapter 3. Note
that the hexadecimal signal codes are just examples.

Listing 10-4. IR Transmitter

#include <IRremote.h> // include IRremote library
long signal[ ] = {OxFF6897, OXFF30CF, OxFF18E7, OXFF7A85, OXFF10EF};
IRsend irsend; // associate irsend with IRremote library

196



CHAPTER 10  INFRARED SENSOR

void setup() // nothing in void setup function

{}

void loop()
{

for (int i=0; i<5; i++) //transmiteach of the five signals

{
irsend.sendSony(signal[i], 24); //transmitsignal with 24 bit length
delay(1000); // delay 1s between signals

}
}

Infrared Emitter and Receiver

M . Infrared distance sensor modules contain an infrared emitter
and receiver (see Figure 10-5), as well as signal processing

EMITTER

recevir — circuits, such as the TCRT500 module that was outlined
PO in Chapter 3. The infrared emitter is an LED that emits an
infrared signal with a wavelength of 980nm and the infrared

receiver is a photo-diode. Specific distance sensor modules can measure
distances between 10cm and 80cm, while the IR emitter and receiver pair
form a simple distance measure for distances between 10cm to 40cm.
The IR receiver has a black casing to block visible light, while the IR
emitter has a clear casing. The long legs of the IR emitter and receiver are
the anodes and the flat side is on the cathode side, as with an LED. Note
the cathode of the IR receiver is connected to 5V, as a reverse-biased
photodiode conducts with incident light, while a forward-biased LED
emits light. The 10kQ resistor connected to the IR receiver functions as
a pull-down resistor, as the IR receiver or photo diode does not conduct
when no infrared light is detected (see Table 10-4).

197



CHAPTER 10  INFRARED SENSOR

* v oosess——— + + + » » o« | ED resistor
ol.—w"—u‘-&-" 220Q

g IR reoewer resistor

IR receiver Infrared (940nm)

fritzing

Figure 10-5. IR emitter and receiver

The output voltage from the IR receiver is converted by the Arduino
ADC to a digital reading. When the tops of the IR emitter and receiver are
facing, the IR receiver reading can provide an estimate of the distance
between them, with the IR receiver reading increasing, non-linearly, from
0 to 1000 with decreasing distance (see Figure 10-6). If the IR emitter and
receiver are positioned close together and parallel, then the IR emitter
signal bounces off the target object onto the IR receiver and the IR receiver
reading is a measure of the double the distance to a target object.

Note that in Listing 10-5, the equations for converting the digital
reading to a distance are empirically derived for an IR emitter and receiver
pair. Different equations may be required for an IR emitter and receiver
pair from other manufacturers.

198



CHAPTER 10  INFRARED SENSOR

50
45
40
35
30
25

20

distance (cm)

15

10

® y =604.71x052

* R?=0.9926
.
.
.
.
e
®
v =-0.4056x+408.79
R?=0.9934 é
®
200 400 600 800 1000

IR receiver reading

Figure 10-6. Distance and IR receiver readings

Table 10-4. Connections for IR Emitter and Receiver

Component Connect to and to

IR receiver short leg Arduino 5V

IR receiver long leg Arduino A5

IR receiver long leg 10kQ resistor Arduino GND
IR emitter LED long leg Arduino 5V

IR emitter LED short leg 220Q resistor Arduino GND

199



CHAPTER 10  INFRARED SENSOR

Listing 10-5. 1R Emitter and Receiver

int IRpin = As5; // IR receiver pin
int reading, dist;

void setup()
{

Serial.begin(9600); // set Serial Monitor baud rate

}
void loop()

{ // reading from IR receiver
reading = analogRead(IRpin); //convertreading to distance
if (reading < 970) dist = 605*pow(reading, -0.53);
else dist = 409 - 0.406 * reading;
Serial.print(reading);Serial.print("\t"); //printreading, tab and
Serial.println(dist); // distance to Serial Monitor
delay(100); // delay between readings

The IR emitter and receiver pair can be used to detect an object moving
between the IR emitter and receiver, as a moving object results in a change to
the IR receiver reading. IR receiver modules for remote control systems, such
as the TSOP382 contain a photo-detector and an amplifier with operational
distances of 45m when powered with just 5V. The change in an IR receiver

signal can trigger an alarm, which is how some movement detectors function.

Summary

An infrared sensor detected infrared signals from a remote control,
displayed the corresponding signal codes on an LCD, controlled LEDs, and
displayed text according to the transmitted signals. An infrared emitter
LED and infrared sensor were used to transmit and receive infrared
signals. An infrared emitter LED and receiver pair formed a motion
detector by measuring the distance between the emitter and receiver.

200



CHAPTER 10

Components List

Arduino Uno and breadboard
Infrared sensor: VS1838B
Infrared remote control
Infrared emitter LED

Infrared receiver

LCD display: 16x4

12C bus for LCD display
Resistors: 2x 220Q and 1x10kQ

LED: 3x

INFRARED SENSOR

201



CHAPTER 11

Radio Frequency
|dentification

A, Radio frequency identification, RFID, uses electromagnetic

' fields to transfer data wirelessly. Common uses of RFID are
entry passes to secure sites, library book logging, or tracking
component parts in a production process. Passive RFID tags

consist only of an antenna and a microchip, whose shadow can be seen

by holding an RFID card up to a light. Passive RFID tags are powered by

the RFID reader’s electromagnetic field to receive messages from the RFID

reader and transmit messages to the RFID reader.

The MFRC522 RFID reader operates at a frequency of 13.56MHz and
reads MIFARE Classic contactless cards and tags, which have to be within
2cm of the RFID reader to be read. The 1kB card has 1024 bytes of data
storage, with 16 sectors of four blocks, each containing 16 bytes of data. The
block structure is 6 bytes for data or Key A, and 4 access bytes and 6 bytes for
data or Key B. The 4kB card has 4096 bytes of data storage, with 32 sectors
of 4 blocks, and 8 sectors of 16 blocks, each containing 16 bytes of data. The
first block of a 1kB or 4kB card contains the following:

e Unique Identifier (UID): stored in 4 bytes of block 0

o Select Acknowledge (SAK) HEX code: 08 and 18 for
MIFARE Classic

e  Proximity Integrated Circuit Card (PICC) type: MIFARE 1K or 4K

© Neil Cameron 2019 203
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_11



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

The MFRC522 RFID reader uses the Serial Peripheral Interface bus
(SPI) for communication. SPI has a master-slave framework, requiring the
three lines: master-out slave-in (MOSI), master-in slave-out (MISO), and
serial clock (SCK), with a separate slave select (SS) line for each device (see
Figure 11-1). The terminology is, unfortunately, the current convention.

SCK

'MosI T F
Micro- MISO v‘ +| ¥
controller

Device 1 |Device 2 |Device 3

SS F T ¥

Figure 11-1. SPI layout

All devices share the MOSI, MISO, and SCK lines, but the SS line
determines which device communicates with the microcontroller. The
Arduino SPI pins are 10, 11, 12, and 13 for SS, MOSI, MISO, and SCK. Other
Arduino pins can be used as the SS line, when there is more than one SPI
device. The SS pin on the MFRC522 RFID reader is marked SDA, for serial
data, and the interrupt pin (IRQ) is not connected to the Arduino. The
MFRC522 RFID reader must be connected to 3.3V and not to 5V.

For comparison with SPI, the layout of the I12C bus, outlined in
Chapter 4, uses the two bidirectional lines, SCK and SDA (see Figure 11-2).
The microcontroller communicates with all devices, but the message
includes the address of the device to be communicated with, so that only
the relevant device responds to the microcontroller. 2C communication

204



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

is slower than SPI communication, as the lines are bi-directional. I2C is
used when outputting low amounts of data, such as with sensors, while SPI
communication is used for high volumes of data.

Micro-
controller|

Device 1 |Device 2 |Device 3

Figure 11-2. 12C layout

There are differences between SPI modules in the naming of module
pins, such as CS or SS or LOAD, MOSI or DATA or DIN, and SCK or CLK.
In sketches with SPI modules, the SPI pin naming of the module is used
in the sketch.

The MFRC522 library by Miguel Balbao is recommended for sketches
with RFID. The MFRC522 library is installed within the Arduino IDE, using
installation method 3, as outlined in Chapter 3.

Display Content of MIFARE Classic 1K and 4K

Connections for the MFRC522 RFID reader (see Figure 11-3) are
shown in Table 11-1. A sketch (see Listing 11-1) to display the content
of a MIFARE Classic 1K or 4K RFID contactless card requires only the
mfrc522.PICC_DumpToSerial (&(mfrc522.uid)) instruction. The rest
of the sketch defines the pin connections to the Arduino, initializes

205



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

hardware, and waits for the contactless card to be presented to the RFID
reader. The mfrc522.PICC_IsNewCardPresent() and mfrc522.PICC_
ReadCardSerial() instructions determine if a contactless card has been
presented and read by the RFID reader.

resistors

RFID-RC522

fritzing

Figure 11-3. RFID card reader

206



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

Table 11-1. Connections for RFID Card Reader

Component Connect to and to
RFID reader 3.3V Arduino 3.3V

RFID reader RST Arduino pin 9

RFID reader GND Arduino GND

RFID reader IRQ not connected

RFID reader MISO Arduino pin 12

RFID reader MOSI Arduino pin 11

RFID reader SCK Arduino pin 13

RFID reader SDA Arduino pin 10

LED long legs Arduino pins 3, 4

LED short legs 22042 resistors Arduino GND

Listing 11-1. Content of MIFARE Contactless Card

#include <SPI.h>
#include <MFRC522.h>
int RSTpin = 9;

int SDApin = 10;

// include SPI library

// include MFRC522 library
// reset pin for MFRC522

// serial data pin

MFRC522 mfrc522(SDApin, RSTpin); //associate mfrc522 with MFRC522 library

void setup()

{
Serial.begin(9600);
SPI.begin();
mfrc522.PCD_Init();

}

// Serial output at 9600 baud
// initialise SPI bus

// initialise card reader

207



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

void loop()
{

if(!mfrc522.PICC_IsNewCardPresent()>0) return; //waitforanew card
if(Imfrc522.PICC ReadCardSerial()>0) return; //read card content
mfrc522.PICC DumpToSerial (&(mfrc522.uid)); // print to Serial Monitor

}

Mimic RFID and Secure Site

To mimic use of RFID for accessing a secure site, Listing 11-2 identifies
which contactless cards are valid or are not valid and turns on a green
LED or a red LED accordingly. Rather than turning on an LED, the rotor
of a servo motor can be rotated to open a lock, when simulating use of
RFID in a security scenario. The sketch uses two functions, cardID() and
cardResult(), to read the card UID from the buffer one character at a time
and to print on the serial monitor if the card is valid or invalid.

As with Listing 11-1, much of the sketch (see Listing 11-2) declares
variables and prints to the serial monitor. The details of the MFRC522
library instructions, such as mfrc522.PICC_GetType(mfrc522.uid.sak),
were obtained from MFRC522>Examples in the MFRC522 library within
the Arduino IDE.

Listing 11-2. RFID for Accessing a Secure Site

#include <SPI.h> // include SPI library

#include <MFRC522.h> // include MFRC522 library

int RSTpin = 9; // reset pin for MFRC522

int SDApin = 10; // serial data pin

MFRC522 mfrc522(SDApin, RSTpin); //associate mfrc522 with MFRC522 library
int redLED = 4; // red LED pin

int greenlED = 3; // green LED pin

208



int nuid = 1;

String uids[20];

String uid;

int cardOK, pin, piccType;
int cardRead;

void setup()

{
Serial.begin(9600);
SPI.begin();
mfrc522.PCD_Init();
pinMode (redLED, OUTPUT);
pinMode (greenLED, OUTPUT);
uids[0] = "c049275";

}

void loop()
{

CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

// number of valid cards
// list of valid UIDs - maximum 20

// ** for add/delete card Listing 11-3

// define Serial output baud rate
// initialise SPI bus

// initialise MFRC522

// define LED pins as output

// UIDs of valid cards

if(!mfrc522.PICC_IsNewCardPresent()>0) return; //waitfor a new card
if(!mfrc522.PICC ReadCardSerial()>0) return; //read new card content
cardID(mfrc522.uid.uidByte, mfrc522.uid.size); //function to

Serial.print("\nCard UID\t");

Serial.println(uid);

// read card UID
// print "card UID" and a tab
// print card UID

piccType = mfrc522.PICC_GetType(mfrc522.uid.sak); //card PICC type

Serial.print("PICC type\t");

// print PICC type

Serial.println(mfrc522.PICC GetTypeName(piccType)); // card SAK code

Serial.print("SAK code\t");

// print "SAK code" and a tab

Serial.println(mfrc522.uid.sak); // print SAK HEX code

cardOK = 0;
pin = redlLED;

209



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

for (int i=0; i<nuid; i++)

{
if(uid == uids[i]) // check if card on valid list
{
cardoK = 1;
pin = greenlLED; // set relevant LED pin
}
} // function to turn on LED and print SAK

cardResult(mfrc522.uid.uidByte, mfrc522.uid.size);
// *** INSERT Listing 11-3 HERE
}

void cardID(byte * buffer, byte bufferSize) //function to read card UID
{

uid=""; // increment uid with buffer

for (int i=0; i<bufferSize; i++) uid=uid+String(buffer[i], HEX);
}

void cardResult(byte * buffer, byte bufferSize)

{ // function to turn on LED, print SAK
digitalWrite(pin, HIGH); // turn on and off relevant LED
delay(1000);
digitalWrite(pin, LOW);
for (int i = 0; i < bufferSize; i++) //printto Serial Monitor SAK code
{ // with leading “0” for

if(buffer[i] <16) Serial.print("0"); //HEXvalues

else Serial.print(" ");

Serial.print(buffer[i], HEX);
} // print message to
if (cardoK == 1) Serial.println("\tValid"); // Serial Monitor
else Serial.println("\tInvalid"); //dependingon card validity

}

210



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

Master Card Validation

In a contactless card security system, new cards must be defined as valid
and old cards must be classed as invalid. Listing 11-3 is incorporated
within Listing 11-2 to include the facility to update the list of validated
cards. A master card is used to validate a card or to remove a card from the
set of validated cards. The master card is the first card in the uid[ ] array.
When the master card is detected, the UID of the next card read is checked
against the list of valid cards and is added to the list, if not currently on the
list, or deleted from the list, if currently on the list. The set of instructions
in Listing 11-3 is inserted as the penultimate line of the void loop()
function in Listing 11-2. An additional function, readUID() in Listing 11-4,
is required to determine if the card has been read or not, is included at the
end of the sketch.

Listing 11-3. Inclusion of Master Card

if(uid == uids[0]) // read card is the master card

{
Serial.println("\nMaster card"); //print "Master card" on a new line
digitalWrite(redLED, HIGH); // turn on the red and green LEDs
digitalWrite(greenLED, HIGH);
delay(1000);
digitalWrite(redLED, LOW); // turn off the red and green LEDS
digitalWrite(greenLED, LOW);
Serial.println("Scan card to be deleted or added"); //print message
int cardRead=0;

while(!cardRead >0) // wait for a card to be read
{
cardRead = readUID(); // function to detect card
if(cardRead == 1) // card detected

211



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

{

cardID(mfrc522.uid.uidByte, mfrc522.uid.size); //read card UID

cardOK = 0;

for (int i=0; i<nuid; i++) if(uid == uids[i]) cardOK = i;

if(cardoK !=0) // card already validated, delete from list

{
Serial.print("Card "); //printto Serial Monitor that card deleted
Serial.print(uid); // from validated list
Serial.println(" deleted");
uids[cardok] = ""; // delete card from list of valid cards

}

else

{
Serial.print("Card "); //printto Serial Monitor that card added
Serial.print(uid); // to validated list
Serial.println(" added");
nuid = nuid+1; // increment valid cards
uids[nuid-1] = uid; // add card to list of valid cards

}

}
}
delay(500); // delay so card details are not shown again

}

The first two instructions in the readUID() function are the similar to
the first two instructions in the void loop() function, with the addition of 0
after return (see Listing 11-4). If a card has not been presented to or read by
the card reader, then the readUID() function returns 0 to the main sketch.
After the card has been read, the readUID() function returns I to the main
sketch. The exclamation mark before a variable in the readUID() function
denotes the “opposite value,” as in 0 and I or in HIGH and LOW. The
instruction if(!mfrc522.PICC_IsNewCardPresent()>0) is equivalent to

if(mfrc522.PICC_IsNewCardPresent()<1).

212



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

Listing 11-4. Inclusion of Master Card: readUID Function

int readuID()
{

if(Imfrc522.PICC_IsNewCardPresent()>0) return 0; //waitfor a new card
if(Imfrc522.PICC ReadCardSerial()>0) return 0; //read card content
return 1;

}

Read and Write to Classic 1KB Card

The MFRC522 reader can also write to a MIFARE Classic 1K card or tag. Each
sector of the card has a sector trailer, which is the fourth block in a sector,
containing security and access keys, which should not be over-written. The
first three blocks in a sector are for data storage, with the exception of the
first block of the first sector, which contains manufacturer data.

The sketch (see Listing 11-5) writes data to a user entered block and
then displays the content of the data storage blocks. Again, the majority of
the sketch is for declaring variables and printing to the serial monitor. In
the sketch, the text ABCDEFGHIJKLMNOP is written to the required block
as defined in byte blockData[16] and setting blockData[16] to {0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0} restores the block to the default null value.

In the void loop() function, the while() functions are used to
wait on a card being presented and to wait for a block number to be
entered on the serial monitor. Given that no action is required while
waiting, there are no instructions for the while() functions, as indicated
in thewhile(Serial.available() == 0) {}instruction. The block
= Serial.parseInt()instruction extracts the block number from the
serial buffer, as described in Chapter 4. After a block number is entered,
the block number is checked to ensure it is not a sector trailer block.
Information in blockData is then written to the required block with the
writeBlock(block, blockData) function. Then for each block, the

213



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

data content of the contactless card is read using the readBlock(block,
blockRead) function and the card content is displayed on the serial
monitor. Finally, communication with the contactless card is closed with
the mfrc522.PCD_StopCrypto1() instruction.

The two functions, readBlock() and writeBlock(), have similar
structure. Validation checks are made prior to reading or writing to
a block with the mfrc522.PCD_Authenticate() function and the
MFRC522: : STATUS OK status of the check is returned. The readBlock()
function reads data in each block, except for the fourth block in each
sector, which is the sector trailer containing security and access keys.

The mfrc522.PICC_DumpMifareClassicSectorToSerial (&(m
frc522.uid),8key, sector) instruction reads and displays on the
serial monitor all the data within a specified sector, while the mfrc522.
PICC DumpToSerial (&(mfrc522.uid)) instruction reads and displays
on the serial monitor all the data on the MIFARE Classic 1K or 4K RFID
contactless card.

Listing 11-5. Read and Write to Contactless Card

#include <SPI.h> // include SPI library

#include <MFRC522.h> //include MFRC522 library

int RSTpin = 9; // reset pin for MFRC522

int SDApin = 10; // serial data pin

MFRC522 mfrc522(SDApin, RSTpin); //associate mfrc522 with MFRC522 library
MFRC522: :MIFARE_Key key; // access key

byte blockData[16] = {"ABCDEFGHIJKLMNOP"}; // data to be written
// reset block to default value

//byte blockData[16] ={o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

byte blockRead[18]; // to hold the read data

byte blocksz = sizeof(blockRead);

int block, sectorTrail, check;

214



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

void setup()

{
Serial.begin(9600); // define Serial output baud rate
SPI.begin(); // initialise SPI bus
mfrc522.PCD _Init(); // initialise mfrc522

for (byte i=0; i<6; i++) key.keyByte[i] = OxFF; //access key set to HEX OxFF
}

void loop()
{ // print message to Serial Monitor
Serial.println("Place card or tag beside MFRC522 reader");
while (!mfrc522.PICC_IsNewCardPresent())
i} // do nothing but wait for a new card
mfrc522.PICC_ReadCardSerial(); // read card content
Serial.println("Enter block number"); //print message
while(Serial.available() == 0){} //mno action until entry in serial buffer
while(Serial.available() »0) block = Serial.parseInt(); //getblock number
if((block+1)%4==0 || block == 0) //checkifblockis sector trailer block
{ // print message to
Serial.print("Cannot write to block "); //Serial Monitor
Serial.println(block); // return to start of void loop()
return;
}
writeBlock(block, blockData); //function to write data
Serial.print("\nFinished writing to block "); //print message
Serial.println(block);
for (block=0; block<64; block++) //display content of non-sector
{ // trailer blocks
if((block+1) % 4 !=0 8& block !=0) //non-sector trailer blocks

215



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

{

readBlock(block, blockRead); // function to read data

Serial.print("\nBlock "); // print block number

Serial.print(block);Serial.print("\t");

for (int i=0 ; i<16 ; i++) Serial.write(blockRead[i]);

} // print block data
}
Serial.println("\n\nFinished reading blocks"); //print message
Serial.println("Enter 1 to continue writing to a card or tag");
while(Serial.available() == 0) { } //no action until entry to serial buffer
// extract integer from serial buffer

while(Serial.available()>0) check=Serial.parseInt();
mfrc522.PCD_StopCryptol(); //stop communication to card or tag

}

void writeBlock (int block, byte blockData[]) //function to write to block
{
sectorTrail = 3+4*(block/4);
check = mfrc522.PCD Authenticate(MFRC522::PICC_CMD MF_AUTH KEY A,
sectorTrail, &key, &(mfrc522.uid));
if (check != MFRC522::STATUS OK)
Serial.println(mfrc522.GetStatusCodeName(check));
check = mfrc522.MIFARE Write(block, blockData, 16);
if (check != MFRC522::STATUS OK)
Serial.println(mfrc522.GetStatusCodeName(check));

}

void readBlock (int block, byte blockRead[]) //function to read block

{
sectorTrail = 3+4*(block/4);

check = mfrc522.PCD Authenticate(MFRC522::PICC_CMD MF_AUTH KEY A,
sectorTrail, &key, &(mfrc522.uid));

216



CHAPTER 11 RADIO FREQUENCY IDENTIFICATION

if (check != MFRC522::STATUS OK)
Serial.println(mfrc522.GetStatusCodeName(check));

check = mfrc522.MIFARE Read(block, blockRead, &blocksz);

if (check != MFRC522::STATUS OK)
Serial.println(mfrc522.GetStatusCodeName(check));

Summary

The MFRC522 RFID reader was used to read and write to MIFARE
contactless cards, with a master card validation process to emulate a
security system by adding and deleting contactless cards from a validation
list. SPI and I12C communication protocols were compared.

Components List

e Arduino Uno and breadboard

e RFID reader: MFRC522

o  MIFARE Classic 1 contactless cards: x3
e LED:x2

e Resistor: 2x 220Q

217



CHAPTER 12

SD Card Module

SD (Secure Digital) cards can be used for data storage and
> & data logging. Examples include data storage on digital

cameras or mobile phones and data logging to record

P information from sensors. Micro SD cards can store 2GB
o of data and should be formatted as FAT32 (File Allocation

Table) format. The micro SD card operates at 3.3V, so only micro SD card

modules with a 5V to 3.3V voltage level shifter chip and a 3.3V voltage

regulator can be connected to the Arduino 5V supply.

The micro SD module communicates with the Arduino using Serial
Peripheral Interface (SPI), as outlined in Chapter 11. The SPI connecting
pins on the micro SD module include the MOSI, MISO, SCK pins and the
SS pin denoted chip select (CS), which are connected to Arduino pins 11,
12, 13, and 10, respectively. Data is stored in a .csv file (comma-separated
values), which can be directly loaded into Excel. File names must have FAT
8.3 format, with no more than eight characters in the file name followed
by a dot and a three-character extension, such as File1234.csv. If a .csv file
is created on the micro SD card with Excel, then Excel should be closed
before ejecting the SD card from the computer or laptop.

Alphanumeric data, in a .csv file written to an SD card, must be
formatted as a string with commas separating each data value. The
following instruction concatenates into the data string the light, temp, and
humid values, separated by commas.

data = String(light) + "," + String(temp) + "," + String(humid)

© Neil Cameron 2019 219
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_12



CHAPTER 12 SD CARD MODULE

Data is only written to the file on the SD card following the file.close()
instruction; therefore, every file.println(data) instruction must be
followed by a file.close() instruction and be preceded by an
SD.open("filename", FILE WRITE) instruction. The SD.open() function
has default setting of FILE_READ, so the option FILE_WRITE is required to
write to a file.

The sequence of instructions required every time to write to an SD
card is

SD.open("filename", FILE WRITE);
file.println(data);
file.close();

Temperature and Light Intensity Logging

Storing temperature and light intensity measurements on a micro SD card
illustrates use of the micro SD module (see Figure 12-1). When the light
dependent resistor (LDR) and LM35DZ sensors operate separately, the
LDR signal has a sinusoidal pattern, while the LM35DZ signal is essentially
flat (see Figure 12-2). When the two sensors operate together, there can

be interference from the LDR signal on the LM35DZ signal, which can be
removed with a bypass capacitor (see Figure 12-2). Electrolytic capacitors

“u-n

are polarized and the cathode, which has a “~” marking and a colored strip
on the side, is connected to GND. Connections for Figure 12-1 are given in

Table 12-1.

220



CHAPTER 12 SD CARD MODULE

.« e e

L
..
" GEmmmmD Vv
L
L

capauior
LM35DZ S2P2

fritzing

Figure 12-1. Micro SD card module with sensors

LDR signal ) LM35DZ signal «+ LDR and LM35DZ signals

WA

A

(ARRRERERRNARY

Figure 12-2. Signals from LDR and LM35DZ sensors

221



CHAPTER 12 SD CARD MODULE

Another example of signal noise is the alternating current (AC) ripple
effect, particularly in the 50Hz-60Hz frequency, which is the frequency
of domestic AC power supplies. With alternating current, a capacitor’s
reactance is analogous to a resistor’s resistance and is equal to 1/(2zfC),
where fis the signal frequency and C the capacitance. A bypass capacitor
has high reactance to signals with low frequency, such as the LM35DZ
signal, and low reactance to signals with high frequency, such as the LDR
signal. When a bypass capacitor is connected between the LM35DZ signal
and ground, the high-frequency noise will go to ground, leaving a clean
LM35DZ signal available for the microcontroller.

The required capacitance of the bypass capacitor depends on the lower
limit of frequencies to be blocked and the reactance of the capacitor has to
be significantly lower than the output impedance of the LM35DZ sensor.
The LM35DZ sensor has an output current of 60pA and an output voltage
of 200mV with a temperature measurement of 20°C, giving an output
impedance of 3.3kQ. Setting the capacitor’s reactance to one tenth of the
LM35DZ output impedance (Z), with a frequency threshold of 50Hz, then
the required capacitance of 10pF is derived from the equation C = 1/(2zfZ).

In Chapter 3, the temperature-recording sketch (see Listing 3-1) used
the analogReference (INTERNAL) instruction to reference the LM35DZ
temperature sensor’s output voltage to 1.1V rather than the default 5V. The
output voltage of the light dependent resistor is referenced to 5V, so when
the temperature sensor and light dependent resistor are used together, the
analogReference(INTERNAL) option is not available.

The sketch (see Listing 12-1) to write measurements of light intensity
and temperature to an SD card checks for the presence of the SD card and
that the SD card can be written to. Measurement of light intensity with a
LDR in conjunction with a voltage divider was described in Chapter 3. The
SD library is included in the Arduino IDE and is used to write to the micro
SD card. In the sketch, the existing file, data.csv, is effectively overwritten
by first deleting the file and then creating a new file. Later in the chapter,
file names are incremented, so that overwriting files is not required.

222



CHAPTER 12 SD CARD MODULE

Table 12-1. Connections for Micro SD Card Module with Sensors

Component Connect to and to

SD card GND Arduino GND

SD card VCC Arduino 5V

SD card MISO Arduino pin 12

SD card MOSI Arduino pin 11

SD card SCK Arduino pin 13

SD card SCS Arduino pin 10

LDR right Arduino 5V

LDR left Arduino pin A0

LDR left 4.7kQ resistor Arduino GND
LM35DZ GND Arduino GND

LM35DZ signal Arduino pin A1 10pF capacitor positive
LM35Dz vee Arduino 5V

10uF capacitor negative Arduino GND

Listing 12-1. Micro SD Card Module With Sensors

#include <SPI.h>
#include <SD.h>

File file;

String filename
int CSpin = 10;
int lightPin = Ao;
int tempPin = A1;

int i = 0;
int light;
float temp;
String data;

"data.csv";

// include SPI library
// include SD library
// associate file with SD library

// filename

// chip select pin
// LDR light intensity pin

// temperature sensor pin

// data record counter

223



CHAPTER 12 SD CARD MODULE

void setup()

{
Serial.begin(9600); // define Serial output baud rate
Serial.println("checking SD card"); //print message to Serial Monitor
if(SD.begin(CSpin) == 0) // check for presence of SD card
{

Serial.println("Card fail"); //return to void setup() if SD card not found
return;
}
Serial.println("Card OK");
if(SD.exists(filename)>0) SD.remove(filename); // delete existing file
file = SD.open(filename, FILE WRITE); // create new file

if(file == 1) // file opened

{
String header = "i, light, temp"; //create column headers
file.println(header); // write column header to SD card
file.close(); // close file after writing to SD card

}

else Serial.println("Couldn't access file"); //file not opened

}

void loop()

{
i++; // increase data record counter
Serial.print("record ");Serial.println(i); //printrecord number
light = analogRead(lightPin); // light reading

temp = (500.0*analogRead(tempPin))/1023; // temp reading

// referenced to 5V create string from readings
data = String(i) + "," + String(light) + "," + String(temp);
file = SD.open(filename, FILE_WRITE); //open data file before writing

file.println(data); //write data string to file
file.close(); // close file after writing to SD card
delay(5000); // delay 5s before next reading

224



CHAPTER 12 SD CARD MODULE

Information on an SD card can be read and the contents displayed
on the serial monitor. The Serial.print() and Serial.write()
instructions differ as the former displays the ASCII (American Standard
Code for Information Interchange) code for an alphanumeric character,
while the latter converts the ASCII code to display the alphanumeric
character. In Listing 12-2, Serial.write() is used to display the
content of the data.csv file.

Listing 12-2. Display Contents Of File

#include <SPI.h> // include SPI library
#include <SD.h> // include SD library

File file; // associate file with SD library
String filename = "data.csv"; //filename

int CSpin = 10; // chip select pin

void setup()
{
Serial.begin(9600); // define Serial output baud rate
if(SD.begin(CSpin) == 0) // check for presence of SD card
{
Serial.println("Card fail");
return; // return to void setup() if SD card not found
}
Serial.println("Card OK");
file = SD.open(filename); //open file to read display contents of file
while (file.available()>0) Serial.write(file.read());
file.close(); // close file after reading

}

void loop()
{} // nothing in void loop() function

225



CHAPTER 12 SD CARD MODULE

Date and Time Logging

The date and time of a sensor measurement or of a data

record can be included when writing data to an SD card
using a real-time clock (RTC) module, such as the DS3231.
The real-time clock can provide seconds, minutes, hours, day, date, month,

and year information. The DS3231 can be powered with 3.3V or 5V and a
CR2032 lithium button-cell battery powers the RTC when not connected
to the Arduino. The DS3231 also has an inbuilt temperature sensor. The
DS3231 uses 12C communication with the two bidirectional lines: serial
clock (SCL) and serial data (SDA) (see Figure 12-3). Connections for the
DS3231 are given in Table 12-2.

-4
x -

=
>
i
=
o
c
-
=
Q.

fritzing

Figure 12-3. DS3231 real-time clock

226



CHAPTER 12 SD CARD MODULE

The DS3231 library by Henning Karsen is recommended, due to
the quality of the manual and ease of accessing time components with
the DS3231 library. A .zip file containing the DS3231 library can be
downloaded from www.rinkydinkelectronics.com. Chapter 3 included
details on installing a downloaded library .zip file using either installation
method 1 or method 2.

When the DS3231 RTC is first used, the date and time must be included
and then the sketch is re-run, with the date and time setting instructions
commented out, as in Listing 12-3. When setting the time, use the 24-hour
time format without leading zeros with uppercase for the weekday. Compiling
and loading takes 10 seconds, so set the time forward by 10 seconds. The
sketch displays the weekday, date and time, followed by the components of
the date and time and then the temperature in Celsius.

Table 12-2. Connections for Real-Time Clock Module

Component Connect to
DS3231 GND Arduino GND
DS3231 Ve Arduino 5V
DS3231 SDA Arduino pin A4
DS3231 SCL Arduino pin A5

Listing 12-3. Real-time Clock Module

#include <DS3231.h> // include DS3231 library
DS3231 rtc(SDA, SCL); // associate rtc with DS3231 library
Time t;

void setup()
{

Serial.begin(9600); // define Serial output baud rate
rtc.begin(); // start rtc

227


http://www.rinkydinkelectronics.com

CHAPTER 12 SD CARD MODULE

//  rtc.setDOW(WEDNESDAY) // set weekday
// rtc.setTime(10, 23, 20); //setthe timeto hh mm ss
//  rtc.setDate(22, 8, 2018); //setthe date to dd mm yyyy

}

void loop()

{
Serial.print(rtc.getDOWStr());Serial.print(" "); //day of week
Serial.print(rtc.getDateStr());Serial.print(" "); //date
Serial.print(rtc.getTimeStr());Serial.print("\t"); //time

t = rtc.getTime(); // components of date and time
Serial.print(t.date);Serial.print(" "); //day
Serial.print(rtc.getMonthStr()); // month as text

Serial.print(" (month ");
Serial.print(t.mon);Serial.print(") "); //month
Serial.print(t.year);Serial.print("\t"); //year
Serial.print(t.hour);Serial.print(":"); //hour
Serial.print(t.min);Serial.print(":"); //minute
Serial.print(t.sec);Serial.print("\t"); //second
Serial.print(rtc.getTemp(),1); // temperature to 1DP
Serial.println(" C");

delay (1000);

Logging Weather Station Data

Listing 12-3 extends Listing 12-1, which stored temperature and light intensity
measurements on an SD card, by including humidity measurements and
recording the date and time of measurement (see Figure 12-4 and Table 12-3).
The sketch has four phases: (1) load libraries for the SD card, the real-
time clock (RTC), and the DHT11 sensor; define the Arduino connection
pins; initialize the real-time clock and DHT11 sensor; and define variables
(2) check the presence of the SD card; create a new data.csv file; and write

228



CHAPTER 12 SD CARD MODULE

a header to the file (3) read the light intensity, temperature, and humidity
sensors; get the date and time components from the real-time clock; create
a data string of the date and time and the sensor measurements to be
written to the data file and (4) write data to the file on the SD card.

There are several libraries for the DHT11 sensor and the dht library
(DHTIib) by Rob Tilllaart is recommended. The dht library is contained
within a .zip file available at https://github.com/RobTillaart/Arduino.
Use installation method 1 or method 2 to install the dht library, as outlined
in Chapter 3.

fritzing

Figure 12-4. SD card, RTC with sensors

229


https://github.com/RobTillaart/Arduino

CHAPTER 12

SD CARD MODULE

Table 12-3. Connections for SD Card, RTC with Sensors

Component Connect to
DS83231 GND Arduino GND
DS3231 VCC Arduino VCC
DS3231 SDA Arduino pin A4
DS3231 SCL Arduino pin A5
LDR left Arduino 5V
LDR right Arduino pin A3
LDR right 4.7kQ resistor
4.7kQ resistor Arduino GND
PCB DHT11 GND Arduino GND
PCB DHT11 VCC Arduino 5V
PCB DHT11 OUT Arduino pin 6
SD card SCS Arduino pin 10
SD card SCK Arduino pin 13
SD card MOS/ Arduino pin 11
SD card MISO Arduino pin 12
SD card VCC Arduino 5V
SD card GND Arduino GND

Listing 12-4. Weather Station

#include <SD.h> // include SD library

File file;

String filename = "data.csv";

#include <DS3231.h>

230

// associate file with SD library
// filename
// include DS3231 library



CHAPTER 12 SD CARD MODULE

DS3231 rtc(SDA, SCL); // associate rtc with DS3231 library
#include <dht.h> // include dht library

dht DHT; // associate DHT with dht library
int CSpin = 10; // chip select pin for SD card

int lightPin = A3; // light dependent resistor pin

int PCBpin = 6; // PCB mounted DHT11 pin

int i = 0; // data record counter

int check, light, temp, humid;
String data, date, time;

void setup()
{
Serial.begin(9600); // define Serial output baud rate
rtc.begin(); // start rtc
Serial.println("checking SD card"); // check for presence of SD card
if(SD.begin(CSpin) == 0)
{
Serial.println("Card fail"); //return to void setup() if SD card not found
return;
}
Serial.println("Card OK");
if(SD.exists(filename)>0) SD.remove(filename); // delete old file
file = SD.open(filename, FILE WRITE); // create new file
if(file == 1)
{ // column headers
String header = "record, time, light, temp, humid, on ";
header = header + String(rtc.getDateStr()); // date
file.println(header); //write column headers to file
file.close(); // close file after writing to SD card

}

else Serial.println("Couldn't access file"); //file notopened

}

231



CHAPTER 12 SD CARD MODULE

void loop()

{
i++; // increase data record counter
Serial.print("record ");Serial.println(i); // print record number
light= analogRead(lightPin); //lightintensity reading
check = DHT.read11(PCBpin);

temp = DHT.temperature; // temperature reading
humid = DHT.humidity; // humidity reading
time = rtc.getTimeStr(); // time stamp

// combine measurements into a string
data = String(i) + "," + String(time) + "," + String(light);
data
file

file.println(data); // write data string to file

data + "," + String(temp)+ "," + String(humid);
SD.open(filename, FILE_WRITE); //open data file before writing

file.close(); // close file after writing to SD card
delay(1000); // delay 1s before next reading

Increment File Name for Data Logging

A file name for writing data to an SD card can be incremented within a
sketch to create a new file, rather than deleting the existing file. For example,
anew file data4.csv is created if the file data3.csv already exists. Listing 12-5
illustrates incrementing the file name and then writing to the new file on the
SD card. In the sketch, the base file name is data.csv, which is incremented
to datal.csv, data2.csv, and so forth, with the following instruction.

filename = basefile + String(filecount) + ".csv

filecount increments the file name.

Listing 12-5. Incrementing File Name

#include <SPI.h> // include SPI library
#include <SD.h> // include SD library
File file; // associate file with SD library

232



int CSpin = 10;

String filename;

String basefile = "data";
bool filefound = false;
int filecount = 0;

int count = 0;

String data;

void setup()

{
Serial.begin(9600);

if(SD.begin(CSpin) == 0)

{

CHAPTER 12 SD CARD MODULE

// chip select pin for SD card

// default filename is data.csv

// for incrementing filename

// data to write to SD card

// define Serial output baud rate

Serial.println("Card fail"); //return to voidloop() if SD card not found

return;

}

Serial.println("Card OK");

filename=basefile + ".csv"; //generate filename

while (filefound == 0)
{

// search for file with filename

if(SD.exists(filename)>0) //iffilename exists on SD card,

filename = basefile + String(filecount) +

// then increment filename counter

// generate new filename

'.csv';

else filefound = true; //flag file with filename located on SD card

file = SD.open(filename, FILE_WRITE); //open file on SD card

{ filecount++;
}

}

if(file == 1)

{

Serial.print(filename);Serial.println(" created");

data = "Count";

// column header

233



CHAPTER 12 SD CARD MODULE

file.println(data); // write column header to file
file.close(); // close file after writing to SD card

}

else Serial.println("Couldn't access file"); //file not opened

}

void loop()
{

count = count + 1; // incremental counter

data = String(count); // convert counter to string

File file = SD.open(filename, FILE WRITE); //open file on SD card

if(file == 1) file.println(data); //write data string to file on SD card
file.close(); // close file on SD card
delay(1000); // delay 1s before next count

Listing Files on an SD Card

Details of the file names and sizes, in bytes, on an SD card are displayed
with Listing 12-6. The 1ist () function checks if a file is a directory and
displays the directory name, and if the file is not a directory, then details of
the files within the directory are displayed.

Listing 12-6. Display Contents of SD Card

#include <SPI.h> // include SPI library
#include <SD.h> // include SD library

File file; // associate file with SD library
int CSpin = 10; // chip select pin

void setup()
{

Serial.begin(9600); // define Serial output baud rate

234



CHAPTER 12 SD CARD MODULE

if(SD.begin(CSpin) == 0) // check for presence of SD card
{

Serial.println("Card fail"); //return to void setup() if SD card not found

return;
}
Serial.println("Card OK");
file = SD.open("/"); // open SD directory of file information
list(file, 0); // function to display file information
}
void loop() // nothing in void loop() function
{}

void list(File direct, int nfiles) //function to display file information

{

while (1) // list function only runs once
{
File entry = direct.openNextFile(); //nextfilein directory
if (entry == 0) break; // stop at end of directory
if (entry.isDirectory()) // check s file is a directory
{
Serial.print(entry.name()); // display directory name
Serial.println("\tis a directory");
list(entry, nfiles+1); // only list details of files

}

else

{
Serial.print(entry.name());Serial.print("\t"); //display file name

Serial.println(entry.size()); // display file size (bytes)
}

entry.close();

235



CHAPTER 12 SD CARD MODULE

Summary

Data from a real-time clock module and sensors was written to an SD card
for date-stamped data logging. File names were automatically incremented
rather than overwriting files. The content of a given file and information on
the file structure of the SD card were displayed.

Components List

e Arduino Uno and breadboard

e Micro SD card module

e Real-time clock module: DS3231

o Temperature sensors: LM35DZ and DHT11
o Light dependent resistor (or photoresistor)
e Resistor: 4.7kQ

o Capacitor: 10pF

236



CHAPTER 13

Screen Displays

o Displaying information on the serial monitor has
’ u limitations on mobility with the Arduino connected to a
computer screen, and the LCD screen displays only 16x4

characters and does not display images. The TFT (thin-
film transistor) LCD screen offers both mobility and flexibility in a display.

TFT LCD Screen

The ST7735 1.8-inch TFT LCD screen with resolution 160x128 pixels used
in this chapter has an SD card module for reading files to display.

The two rows of pins on the ST7735 are connections to the TFT LCD
screen, eight pins, and to an SD card, four pins (see Figure 13-1 and
Table 13-1). The ST7735 display screen communicates with the Arduino
using the Serial Peripheral Interface (SPI), as outlined in Chapter 11.

© Neil Cameron 2019 237
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_13



CHAPTER 13 SCREEN DISPLAYS

SPI requires the three lines: MOSI, MISO, and serial clock (SCK). The TFT
LCD screen does not use MISQO, as the TFT LCD screen does not transmit
to the Arduino. The SD card module also uses MOSI, MISO, and SCK, as
information from the SD card can be transmitted to the Arduino to display
an image on the TFT LCD screen. MOSI, MISO, and SCK connections are
to Arduino pins 11, 12, and 13, with the SD card module CS connection
generally to Arduino pin 10. In Chapter 19, Arduino pin 8 must be used

for GPS transmission, so the ST7735 TFT CS, RESET, and DC (data or
instruction) pins are connected to Arduino pins 6, 7, and 9, respectively.
Note that the ST7735 A0 pin does not refer to Arduino analog pin A0.

e 1.8" TFT
160x128

fritzing

Figure 13-1. ST7735 TFT LCD screen

238



CHAPTER 13 SCREEN DISPLAYS

Table 13-1. Connections for the ST7735 TFT LCD Screen with an SD
Card Module

TFT screen VCC GND TFTCS RESET DC or AO MOSIor SDA SCK LED

Arduino pin - 5V GND 6 7 9 11 13 3.3V
SD card SDCS MOSI MISO SCK
Arduino pin -~ 10 11 12 13

Connection of the TFT LCD screen VCC pin to Arduino 5V is only
required when the SD card module is required, as the TFT LCD screen LED
connection to Arduino 3.3V is sufficient for the ST7735 TFT LCD screen.

Two libraries: Adafruit ST7735 and Adafruit GEX must be installed
using the Arduino IDE, as outlined in Chapter 3 using installation method 3.
When using example sketches from the Adafruit ST7735 library, pin
connections for ST7735 TFT CS, RESET, and DC pins should be changed
from Arduino pins 10, 9, and 8 to Arduino pins 6, 7, and 9, respectively.

The ST7735 1.8-inch TFT LCD screen has 160 rows and 128 columns
of pixels. The top-left corner of the screen is position (0,0). The cursor is
moved to position (x, y) by the setCursor(x, y) instruction. The default
font size is 5x8 pixels per character, which can be increased to 5Nx8N with
the setTextSize(N) instruction for N equal to 1, 2, 3, and so forth. Text
color is defined as setTextColor(color), where color is the HEX code for
a color, with default values given in Listing 13-1. Text is printed with the
print(text) instruction.

Rectangles are defined by the position of the top-left corner, the
width, and the height of the rectangle, with the drawRect(x, y, width,
height, color) instruction or fillRect(x, y, width, height, color)
instruction when the rectangle is to be filled in.

Circles are defined by the position of the center and radius of the
circle, with the drawCircle(x, y, radius, color) instruction and the
corresponding fillCircle(x, y, radius, color) instruction to fill-in
the circle.

239



CHAPTER 13 SCREEN DISPLAYS

Triangles are defined by the three corner points from left to right, with
the drawTriangle(x0, yo, x1, y1, x2, y2, color) instruction or to
fill-in the triangle by fillTriangle(x0, yo0, x1, yi, x2, y2, color).

A point and line are defined by drawPixel(x, y, color) and
drawLine(x0, yo, x1, y1, color), respectively.

The screen orientation can be set as portrait or landscape with the
setRotation(N) instruction with values of 0 or 1, respectively, or the
values of 2 or 3 to rotate the image by 180° for portrait and landscape,
respectively.

The setTextColor(text color, background color) instruction
ensures that new text overwrites existing text, so it is not necessary to draw
a background rectangle over the existing text.

To illustrate positioning the cursor, printing text, and drawing shapes
on the ST7735 TFT LCD screen, Listing 13-1 prints the names of colors and
draws rectangles, circles, and triangles in each color.

Listing 13-1. Display Shapes and Colors

#include <Adafruit ST7735.h> // include ST7735 library
#include <Adafruit GFX.h> // include GTX library
int TFT_CS = 6; // screen chip select pin
int DCpin = 9; // screen DC pin

int RSTpin = 7; // screen reset pin

// associate tft with Adafruit ST7735 library
Adafruit ST7735 tft = Adafruit ST7735(TFT_CS, DCpin, RSTpin);
unsigned int BLACK = 0x0000;
unsigned int BLUE = 0x001F;
unsigned int RED = 0xF800;
unsigned int GREEN = 0x07EO;
unsigned int CYAN = OXO7FF; // HEX codes for colors
unsigned int MAGENTA = OxF81F;
unsigned int YELLOW = OxFFEO;
unsigned int WHITE = OxFFFF;
unsigned int GREY = 0x(C618;

240



String texts[ ] =

CHAPTER 13 SCREEN DISPLAYS

{"BLUE","RED", "GREEN", "CYAN", "MAGENTA" , "YELLOW" , "WHITE", "GREY"};

String text;
unsigned int colors[ ] =

{BLUE, RED, GREEN, CYAN, MAGENTA, YELLOW, WHITE, GREY};

unsigned int color;

void setup()

{
tft.initR(INITR_BLACKTAB);
tft.fillScreen(BLACK);
tft.drawRect(0,0,128,160,WHITE);
tft.drawRect(1,1,126,158,WHITE);
tft.setTextSize(2);

}

void loop()
{
tft.fillRect(2,2,124,156,BLACK);
for (int i=0; i<8; i++)
{
color = colors[i];
text = texts[i];
tft.setTextColor(color);
tft.setCursor(20, 20 * i + 2);
tft.print(text);
delay(250);
}
delay(500);
for (int i=0; i<8; i++)

{

// initialize screen

// fill screen in black

// draw white frame line
// and second frame line

// set text size

// clear screen apart from frame
// for each color

// set color

// set text

// set text color

// position cursor

// print color name

// delay 250ms between colors

// for each color

tft.fillRect(2,2,124,156,BLACK); // clear screen apart from frame

color = colors[i];
text = texts[i];

241



CHAPTER 13 SCREEN DISPLAYS

tft.setCursor(20,25); // move cursor position to (20, 25)
tft.setTextColor(color); // set text color
tft.print(text); // print color name

if ((i+1) % 3 == 0) // draw filled-in triangle

tft.fillTriangle(20,134,64,55,107,134,color);

// draw open rectangle
else if ((i+1) % 2 == 0) tft.drawRect(20,55,88,80,color);
else tft.fillCircle(64,95,39,color); //draw filled-in circle
delay(500);

}

tft.fillRect(2,2,124,156,BLACK); //clear screen apart from frame
tft.drawlLine(2,78,125,78,RED); // draw horizontal line (x,,y) to (x;, y)
tft.drawlLine(2,80,125,80,RED);

tft.drawlLine(62,2,62,157,RED); // draw vertical line (x,y,) to (x, y1)
tft.drawlLine(64,2,64,157,RED);

delay(500);

Displaying Images from an SD Card

Images stored on an SD card, formatted with file system FAT32, can be
displayed on the ST7735 1.8-inch TFT LCD screen, with images saved

as 160x128 pixels in Bitmap format of bit depth 24 and the file extension
.bmp. The ST7735 TFT LCD screen VCC and LED pins are connected to
Arduino 5V and 3.3V pins, respectively, to power the SD card module and
the LCD screen.

The spitftbitmap sketch in the Adafruit ST7735 library displays, on the
ST7735 TFT LCD screen, images stored on an SD card. To retain the same
pin connections between the ST7735 TFT LCD screen and the Arduino as
in Listing 13-1, the pin numbers of the following lines must be changed:

242



CHAPTER 13 SCREEN DISPLAYS

#define TFT_CS 10 // Chip selectline for TFT display change to 6
#define TFT_RST 9 //Resetline for TFT (or see below...) changeto7
#define TFT_DC 8 //Data/command line for TFT changeto9
#define SD_CS 4 // Chip select line for SD card change to 10

In the void setup() function of the spitftbitmap sketch, after the
tft.initR(INITR_BLACKTAB) instruction, add the tft.setRotation(1)
instruction for landscape orientation. For each image to be displayed with
the file name image_filename.bmp, add the following instructions.

bmpDraw("image_filename.bmp", 0, 0); //display image_filename.bmp
delay(5000) // time delay to view image

Screen, Servo Motor, and Ultrasonic
Distance Sensor

An HC-SR04 ultrasonic distance sensor can be secured to the top of a servo
motor for scanning distances through a 180° arc. The scanned image, which
is analogous to a “radar” effect, but using sound waves rather than radio
waves, can be displayed on the ST7735 TFT LCD screen (see Figure 13-2),
with the green points indicating the positions of two objects perpendicular
to each other. Listing 13-2 uses Listing 3-5 for the HC-SR04 ultrasonic
distance sensor from Chapter 3, Listing 8-1 for the servo motor from
Chapter 8, and Listing 13-1 for the screen from this chapter. The schematic
in Figure 13-3 has the ultrasonic distance scanner on a breadboard to
illustrate connection to the Arduino, but for the project, the ultrasonic
distance scanner is secured to the top of the servo motor. As noted in
Chapter 8, the servo motor requires an external power supply. The L4940V5
voltage regulator reduces the external 9V supply to 5V for the servo motor.
The ST7735 TFT LCD screen is connected to Arduino 3.3V with the LED
connection, as the SD card module is not required (see Table 13-2). Note
that the GND connections for all devices must be connected together.

243



CHAPTER 13 SCREEN DISPLAYS

Distance 29 Radius 58

supply capacitor  |oad capacitor
100nF 224F

L4940V5 voltage regulator

fritzing

Figure 13-3. Screen, servo motor, and ultrasonic scanner

244



CHAPTER 13 SCREEN DISPLAYS

Table 13-2. Connections for Screen, Servo Motor, and Ultrasonic

Scanner

Component Connect to and to

ST7735 TFT GND Arduino GND

ST7735 TFT CS Arduino pin 6

ST7735 TFT RESET Arduino pin 7

ST7735 TFT A0 Arduino pin 9

ST7735 TFT SDA Arduino pin 11

ST7735 TFT SCK Arduino pin 13

ST7735 TFT LED Arduino 3.3V

HC-SR04 scanner V/CC Arduino 5V

HC-SR04 scanner Trig Arduino pin A1

HC-SR04 scanner Echo Arduino pin A2

HC-SR04 scanner GND Arduino GND

Servo VCC L4940V5 output 22uF capacitor positive
Servo GND Arduino GND

Servo signal Arduino pin A0

9V battery positive L4940V5 input 100nF capacitor positive
9V battery negative Arduino GND

22|IF capacitor negative Arduino GND

100nF capacitor negative Arduino GND

245



CHAPTER 13 SCREEN DISPLAYS

Listing 13-2 sets up the screen image with text and scan arcs in the
setup() and radar1() functions, measures the distance to an object in the
scan() function, and calculates the scan line and the points indicating an
object to draw on the screen in the radar2 () function (see Figure 13-2).
The majority of the sketch is defining variables and setting up the “radar”
screen with instructions for scanning and calculating the scan line only
accounting for a small part of the sketch.

The maximum measureable scanning distance, maxdist, the
incremental change in scan angle, increment, and the time interval
between scans, speed, can be readily changed in the first section of the
sketch. The interval between scans should be at least 20ms to allow the
servo motor time to move to the new position. Distances displayed in the
screen are scaled based on the radius of the large scan arc of the ST7735
TFT LCD screen and the maximum scanning distance.

The scan line from the middle of the bottom of the screen to the end
point (x, y) is calculated from the scan angle, 6, and the radius of the scan
arc, r. Formula for the horizontal, x, and vertical, y, components of the
scan line are given in Figure 13-4. When drawing a scan line on the ST7735
TFT LCD screen, the angle is defined in radians, so the angle, measured in
degrees, is converted to radians by the formula: radian = anglexx/180. In
the sketch, the Pl variable is predefined in the Arduino IDE with the value
of 1 = 3.14159. The vertical component of the scan line, 128-y, moves the
end point of the scan line up the screen with increasing distance.

(x,y)

y = rsin(0)

0,0 :
(0,0) X = r cos(0)

Figure 13-4. Calculating the scan line

246



CHAPTER 13 SCREEN DISPLAYS

There are several libraries for the HC-SR04 ultrasonic distance sensor
and the NewPing library by Tim Eckel is recommended. The NewPing
library can be installed within the Arduino IDE using installation method 3,
as outlined in Chapter 3.

Listing 13-2. Screen, Servo Motor, and Ultrasonic Scanner

#include <Adafruit ST7735.h> //include the ST7735 library

#include <Adafruit GFX.h> // include the GFX library
int TFT_CS = 6; // screen chip select pin
int DCpin = 9; // screen DC pin

int RSTpin = 7; // screen reset pin

// associate tft with Adafruit ST7735 library
Adafruit_ST7735 tft = Adafruit ST7735(TFT_CS, DCpin, RSTpin);

#include <NewPing.h> // include ultrasonic sensor library
int trigPin = A1; // ultrasonic sensor pins

int echoPin = A2;

int maxdist = 50; // maximum scanning distance in cm

NewPing sonar(trigPin, echoPin, maxdist); //associate sonar with

// NewPing library
#include <Servo.h> // include the servo motor library
Servo servo; // associate servo with Servo library
int servoPin = Ao; // servo motor pin
float radius = 110.0; // radius of displayed scan arc
int increment = 3; // incremental change of scan angle
int speed = 30; // interval (ms) between scans
unsigned int BLACK = 0x0000;
unsigned int YELLOW = OxFFEO;

unsigned int LITEYEL = OxFFF5; //HEX codes for colors
unsigned int GREEN 0x07EO0;

unsigned int WHITE OXFFFF;

int angle, x, y, distance, duration;

247



CHAPTER 13 SCREEN DISPLAYS

void setup()

{
servo.attach(servoPin); // initialize servo motor
tft.initR(INITR_BLACKTAB); // initialize ST7735 TFT LCD screen
tft.fillScreen(BLACK); // clear screen
tft.setRotation(3); // orientate ST7735 TFT LCD screen

tft.setTextColor (WHITE, BLACK); //text color with over-write
tft.drawRect(0,0,160,128,WHITE); //draw white frame line
tft.drawRect(1,1,158,126,WHITE); //and second frame line

tft.setTextSize(1); // set text size
tft.setCursor(3,3); // move cursor to position (3, 3)
tft.print("Distance"); // print text on screen
tft.setCursor(95,3);

tft.print("Radius ");
tft.setCursor(135,3);

tft.print(maxdist); // display value of large arc
}
void loop()
{
radari(); // set up screen with anti-clockwise scan

for (int angle=10; angle<170; angle=angle+increment) radar2(angle);
radari(); // set up screen with clockwise scan
for (int angle=170; angle>10; angle=angle-increment) radar2(angle);

}

void radari()

{

tft.fillRect(2,12,156,114,BLACK); // clear screen apart from frame
tft.drawCircle(80,128,radius/2,YELLOW); // draw arc to assist reading
tft.drawCircle(80,128,radius,YELLOW); //image and second arc

}

248



void radar2(int angle)
{
servo.write(angle);
scan();
delay(speed);
x = radius*cos(angle*PI/180);
y = radius*sin(angle*PI/180);

tft.drawlLine(80,128,80+x,128-y,LITEYEL);

x = x*distance/maxdist;
y = y*distance/maxdist;

tft.fillCircle(80+x,128-y,2,GREEN);

}

void scan()

{
duration = sonar.ping();
distance = (duration/2)*0.0343;

char printOut[4];
String dist = String(distance);

CHAPTER 13 SCREEN DISPLAYS

// move servo motor to angle
// function to measure distance
// interval between scans

// calculate scan line

// draw line from baseline to arc
// calculate position of object

// draw circle when object detected

// duration of echo
// distance measured in cm
// array of characters

// convert distance to string

if(distance<10) dist = " " + dist; //leading a space for values < 10

dist.toCharArray(printOut, 4);
tft.setCursor(60,3);
tft.print(printOut);

OLED Display

// convert string to characters
// move cursor

// display distance on screen

OLED (organic-light emitting diode) displays contain an
organic carbon-based film that emits light in response to a
current. OLED displays do not require a backlight and are low
power devices. OLED displays are used in mobile phones,

digital cameras, and laptops. There are many varieties of
OLED displays and a 128x32-pixel display based on the SSD1306 chip is
used in this chapter. The OLED display logic operates at 3.3V.

249



CHAPTER 13 SCREEN DISPLAYS

The Adafruit SSD1306 and Adafruit GFX libraries are used in this chapter,
although there are several libraries for OLED displays. The libraries are
installed in the Arduino IDE with installation method 3, as outlined in Chapter
3. The hexadecimal 12C address of the OLED display is required by the
microcontroller for communication with the OLED display. With the Adafruit
S8D1306 library, the 12C address is 0x3C or 0x3D for 128x32 or 128x64 OLED
displays, respectively. Listing 4-3 of Chapter 4, scans for I2C devices and
provides the 12C addresses. OLED connections are given in Table 13-3.

If the OLED display has a Reset pin, then the Reset pin is defined as

int OLED_RESET = 4; // OLED reset pin = 4
Adafruit SSD1306 oled(OLED RESET);

Otherwise, the Reset pin is not defined as in the Adafruit SSD1306
oled(-1) instruction.

Table 13-3. Connections for an OLED Screen

Component Connect to
OLED GND Arduino GND
OLED VCC Arduino3.3V
OLED SCK Arduino pin A5
OLED SDA Arduino pin A4

A character and spacing requires 6x8 pixels and a text size of N
requires 6Nx8N pixels, so four, two or one lines of text are possible with
text sizes 1, 2, or 4 on a 128x32 pixel OLED display screen.

Listing 13-3 illustrates some OLED display instructions that must
be followed with the oled.display() instruction to activate the display

instructions.

250



Listing 13-3. OLED Display

#include <Adafruit GFX.h>

#include <Adafruit_SSD1306.h>

CHAPTER 13 SCREEN DISPLAYS

// include Adafruit GFX library
// include Adafruit SSD1306 library

// associate oled with Adafruit_SSD1306 library
Adafruit SSD1306 oled(-1);

void setup()

{
oled.

oled.
oled.
oled.
oled.
oled.
oled.
oled.

begin(SSD1306 SWITCHCAPVCC, 0x3C);

clearDisplay();
setTextColor (WHITE);
setTextSize(2);
setCursor(0,0);
println("Arduino");
print("Applied");
display();

delay(2000);

oled.
oled
oled.
oled.
oled.
oled.
oled.
oled
oled.
oled.

clearDisplay();

.setTextSize(1);

setCursor(0,0);
println("Arduino");
print("Applied");
setCursor(45,16);
print("Arduino");

.setCursor(45,24);

print("Applied");
display();

delay(2000);

// no need to define Reset pin

// OLED display and I2C address
// clear OLED display

// set font color

// set font size (1, 2, 3 or 4)

// position cursor at (0, 0)

// print text with carriage return

// starting on new line print text

// start display instructions

// delay 2s

// font size 1 characters 6x8 pixels

// position cursor at (x, y)
// at top left hand corner of text

251



CHAPTER 13 SCREEN DISPLAYS

oled.clearDisplay();

oled.setTextSize(3); //fontsize 3 characters 18x24 pixels
oled.setCursor(0,8); //maximum of 7 characters per row
oled.print("1234567");

oled.display();

}

void loop() // nothing in void loop() function

(

Touch Screen

The 2.4-inch ILI19341 SPI TFT LCD touch screen with
240x320 pixels enables text and shapes to be drawn with
different colors on the screen. The IL19314 TFT LCD screen
operates at 3.3V, so an 8-channel or two 4-channel logic
level converters should be used to reduce the voltage of the transmitted

signal from the Arduino, which operates at 5V (see Figure 13-5 and
Table 13-4). Logic level converters were outlined in Chapter 4.

252



CHAPTER 13 SCREEN DISPLAYS

fritzing

Figure 13-5. ILI9341 TFT LCD screen with 8-channel logic level
converter and voltage dividers

Table 13-4. Connections for ILI9341 TFT LCD Screen with Logic
Level Converter

ILI9314 TFT Screen Connect with Arduino Uno
vce 3.3V 3.3v
GND GND
CS chip select logic level Pin 10
RESET reset 10kQ resistor Pin 8
DC data command logic level Pin9
(continued)

253



CHAPTER 13 SCREEN DISPLAYS

Table 13-4. (continued)

ILI9314 TFT Screen Connect with Arduino Uno
Mos/ logic level Pin 11
SCK serial clock logic level Pin 13
LED 3.3V
MISO Pin 12
“touch”

T_CLK serial clock logic level Pin7
T_CS chip select logic level Pin 6
T_DIN data input logic level Pin 5
T_D0 data output Pin 4
T_IRQ interrupt logic level Pin 3

An alternative to logic level converters is voltage dividers based on
1kQ and 2.2kQ resistors between the Arduino and the ILI9314 TFT LCD
screen, with the reduced voltage at the junction between the two resistors
(see Figure 13-5). A logic level converter is preferable to a voltage divider,
as the signal capacitance and the voltage divider resistors form a resistor-
capacitor filter (outlined in Chapter 2) that rounds the edge of the digital
signal, which can impact performance of the device receiving the signal.

If 1kQ and 2.2kQ resistors are used voltage dividers, then Arduino
pins 3, 5 to 11 and 13 are each connected to a 1kQ resistor, which is
connected to a 2.2kQ resistor, which is connected to GND. The junction
between the 1kQ and 2.2kQ resistors is connected to the corresponding
pin on the ILI9314 TFT LCD screen (see Figure 13-5).

The Adafruit_IL19341 and Adafruit_GFX libraries are required, which
are available from the Arduino IDE and installed using installation method 3,
as outlined in Chapter 3. The URTouch library by Henning Karlsen is

254



CHAPTER 13 SCREEN DISPLAYS

required for the touch functionality, which can be downloaded from
www.rinkydinkelectronics.comand installed using installation method 1.
The screen orientation can be set as portrait or landscape with the
setRotation(N) instruction with values of 0 or 1, respectively, or the
values of 2 or 3 to rotate the image by 180° for portrait and landscape.
The setRotation(N) instruction is contained in the Adafruit_GFX library,
which impacts coordinate referencing by the URTouch library, so the
(x,¥) coordinates of the touch screen must be transformed, depending on
the screen orientation. Table 13-5 shows the transformation of the (x,y)
coordinates for each setRotation(N) setting, with the orientation of the
ILI9341 TFT LCD screen relative to the screen pins.

Table 13-5. 1L19341 TFT LCD Screen Orientation

Coordinates Transformation
setRotation(N) Screen Pins Top-Left Top-Right  x y
0 bottom (320,240)  (320,0) 240-y 320 -x
1 right (320,0) 0,0 320-x vy
2 top (0,0) (0,240) y X
3 left (0,240) (320,240) X 240-y

Listing 13-4 enables drawing on the ILI9341 TFT LCD screen with a
palette of colors. The screen is cleared by clicking the bottom-left corner of
the screen. The precision options of the URTouch library are PREC_LOW,
PREC_MEDIUM, PREC_HI, and PREC_EXTREME, with the last two taking
longer to read, which can impact drawing with a fast-moving cursor.

Color codes available in the Adafruit IL19341 library are BLACK, NAVY,
DARKGREEN, DARKCYAN, MAROON, PURPLE, OLIVE, LIGHTGREY,
DARKGREY, BLUE, GREEN, CYAN, RED, MAGENTA, YELLOW, WHITE,
ORANGE, GREENYELLOW, and PINK. Colors are defined by prefixing with
ILI9341_, such as ILI9341_GREEN, which is more convenient than defining
HEX codes for each color, as listed in the Adafruit_IL19341.h file.

255


http://www.rinkydinkelectronics.com

CHAPTER 13 SCREEN DISPLAYS

After defining variables, the sketch calls the clear () function to
clear the screen and display the available colors in the palette, which are
selected by touching the screen within a specified region, such as else
if(ty>100 8& ty<120) color = ILI9341 YELLOW for the yellow color.

When the screen is touched outside the palette area, a point is
displayed in the chosen color by the if(tx>20) tft.fillCircle(tx, ty,
radius, color) instruction. Note that the coordinates (tx, ty) refer to
the transformed coordinates after taking account of the screen orientation,
due to the different coordinate referencing of the Adafruit_GFX and
URTouch libraries.

Listing 13-4. Drawing on ILI9341 TFT LCD Screen

#include <Adafruit GFX.h> // include Adafruit GFX library
#include <Adafruit_ILI9341.h> //include Adafruit ILI9341 library
#include <URTouch.h> // include URTouch library

int tftCLK = 13; // clock (SCL)

int tftMISO = 12; // MISO (SDA/SDO - serial data output)
int tftMOSI = 11; // MOSI (SDI - serial data input)

int tftCS = 10;
int tftDC = 9;
int tftRST = 8;
// associate tft with Adafruit IL19341 library and define pins
Adafruit_ILI9341 tft =
Adafruit ILI9341(tftCS, tftDC, tftMOSI, tftCLK, tftRST, tftMISO);
int tsCLK = 7;

int tsCS = 6;
int tsDIN = 5; // data input (~-MOSI)
int tsDo = 4; // data output (~MISO)

int tsIRQ = 3;

URTouch ts(tsCLK, tsCS, tsDIN, tsDo, tsIRQ);// associate ts with
// URTouch library

int radius = 2; // radius of "paintbrush”

256



CHAPTER 13 SCREEN DISPLAYS

int setRot = 3; // portrait 0 or 2, landscape =1 or 3
unsigned int color;
int x, y, tx, ty;

void setup()

{
tft.begin(); // initialise TFT LCD screen
tft.setRotation(setRot); // set touch screen orientation
ts.InitTouch(); // initialise touch screen
ts.setPrecision(PREC_MEDIUM); //settouch screen precision
clear(); // function to clear screen
}
void loop()
{
while(ts.dataAvailable()) // when touch screen pressed
{
ts.read(); // read (x,y) co-ordinates
x = ts.getX();
y = ts.getY();
if(x 1= -1 8y I= -1) // when contact with screen (-1 is no contact)
{ // transform (x,y) co-ordinates

if(setRot == 0) {tx
else if(setRot == 1) {tx
else if(setRot == 2) {tx = y; ty = x;}
else if(setRot == 3) {tx = x; ty = 240-y;}
if(tx<20 8& tx>0) // choose color from palette

{

240-y; ty = 320-x;}
320-x; ty = y;}

if(ty>75 8& ty<95) color
else if(ty>100 && ty<120) color
else if(ty>125 8& ty<145) color
else if(ty>150 && ty<170) color
else if(ty>175 8& ty<195) color

IL19341 RED;
ILI9341 YELLOW;
IL19341_GREEN;
1119341 BLUE;

IL19341_WHITE;

257



CHAPTER 13 SCREEN DISPLAYS

else if(ty>215) clear(); // clear screen
// display chosen color

if(ty>75 8& ty<195) tft.fillCircle(10, 50, 10, color);

} // paint color on touch screen

if(tx>20) tft.fillCircle(tx, ty, radius, color);

}
}
}

void clear()

{ // available colors listed in Adafruit_ILI9341.h
tft.fillScreen(ILI9341 BLACK);
tft.setTextColor(ILI9341 GREEN);  //settext color
tft.setTextSize(2); // set text size
tft.setCursor(110,5); // position cursor middle-top
tft.print("Paintpot");
tft.fillRect(0,75,20,20,IL19341 RED); //display color palette
tft.fillRect(0,100,20,20,1L19341 YELLOW);
tft.fillRect(0,125,20,20,1L19341 GREEN);
tft.fillRect(0,150,20,20,I1L19341 BLUE);
tft.fillRect(0,175,20,20,1L19341 WHITE);
tft.drawCircle(10,225,10,IL19341 WHITE); //draw "clear” circle
tft.setCursor(25,217);
tft.setTextColor(ILI9341 WHITE);
tft.print("clear");
color = ILI9341 WHITE; // default color

Summary

The TFT LCD screen was used to display shapes and digital images stored
on an SD card. An ultrasonic distance sensor and servo motor were
combined to create a “radar” image of surrounding objects. Images were

258



CHAPTER 13 SCREEN DISPLAYS

displayed on an OLED screen, which uses I2C communication. Images

were drawn on the SPI TFT LCD touch screen with a screen-pen.

Components List

Arduino Uno and breadboard

TFT LCD screen: ST7735 1.8-inch

OLED display: 128x32pixels or 128x64 pixels

SPI TFT LCD touch screen: ILI9341 2.4-inch
Ultrasonic distance sensor: HC-SR04

Servo motor: SG90

Voltage regulator: L4940V5

Battery: 9V

Logic level converter: 1x8 channel or 2x4 channel
Capacitors: 0.1pF and 22pF

Resistor: 1x10kQ or 9x1kQ and 9x2.2kQ

259



CHAPTER 14

Sensing Colors

A color can be defined as a combination of red, green, and blue
components, as shown in Figure 14-1. One byte or 8 bits is used to store
each of the red, green, and blue values with 28 = 256 possible values for
each of the red (R), green (G), and blue (B) components of the compound
color. For example, magenta has a (255, 0, 255) RGB format.

255, 255,

Figure 14-1. RGB color values

© Neil Cameron 2019 261
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_14



CHAPTER 14  SENSING COLORS

Red Green Blue (RGB) LED

An RGB LED consists of three combined LEDs:
ared, a green, and a blue LED. An RGB LED is
activated with the analogWrite(pin, value)

o5
..‘\‘{‘.

instruction with pin defined as the Arduino
pulse width modulation (PWM) pin for the red,
green, or blue LEDs and value is the light intensity. The RGB LED used in
Listing 14-1 has a common cathode, which has the longest leg.

Common Blue
Green

Listing 14-1 defines the RGB combinations for each of 14 colors,
ranging from white to navy. For example, the RGB combination for
magenta is (255, 0, 255). A color is then randomly selected by the
random(14) instruction, for a number between 0 and 13, inclusive.

The number of increments, 63, corresponds to step sizes 2 or 4, which
minimizes the difference between the pixel value of one color and any
other color in the R, G, and B matrices. The magnitude of the incremental
change, for each of the RGB components, between the current and new
color is the RGB component difference divided by number of increments.
The delay() determines the rate of change in color. To best visualize the
color change, place a ping-pong ball on top of the RGB LED.

The three instructions at the start of Listing 14-1 detail connections
between the Arduino pins and an RGB LED (see Figure 14-2), with the
Arduino GND connected the common pin of the RGB LED. A 220Q resistor
is connected between each of the RGB LEDs and the Arduino PWM
pins. The RGB LED module includes a 150Q resistor for each LED, so no
additional resistors are required.

262



CHAPTER 14  SENSING COLORS

28 8 8 8 8080800080
LI R R I T O IR IR Y
. 8 8 & 8 8 8 8 8 s e

)

resistors RGB LED

220Q common cathode
fritzing
Figure 14-2. RGB LED
Listing 14-1. RGB LED
int redLED = 6; // LEDs on PWM pins
int greenlED = 5;
int bluelED = 3;
int steps = 63; // number of increments
int oldR = 0; // pixel value difference = 255 or 128
int oldG = 0; // so steps of size 4 or 2
int oldB = 0;
int incR, incG, incB; // incremental changes

String color[ ] =
{"White","Red","Lime","Blue","Yellow","Cyan", "Magenta", "Grey",
"Maroon","0live","Green","Purple","Teal", "Navy"};

int R[] = {255,255, 0, 0,255, 0,255,128,128,128, 0,128, 0, O};

int G[] = {255, 0,255, 0,255,255, 0,128, 0,128,128, 0,128, 0};

int B[] = {255, o0, 0,255, 0,255,255,128, 0, 0, 0,128,128,128};

263



CHAPTER 14  SENSING COLORS

void setup()

{
pinMode(redLED, OUTPUT); // define LED pins as output
pinMode(greenLED, OUTPUT);
pinMode(bluelED, OUTPUT);

}

void loop()

{
int i = random(14); // select next color, between 0 and 13
incR = (R[i]-oldR)/steps; // calculate the incremental amount
incG = (G[i]-0ldG)/steps;
incB = (B[i]-o0ldB)/steps;

for (int n = 0; n<steps; n++) //for each incremental change

{
analogWrite(redLED, oldR + n*incR); //change the LED intensity
analoghrite(greenLED, 0ldG + n*incG);
analogWrite(blueLED, oldB + n*incB);

delay(5000/steps); // time delay between color increments
}
oldR = R[i]; // update the current color
oldG = G[i];
oldB = B[i];

565 Color Format

Each R, G, and B component has 2% = 256 possible values as a component

is stored as an 8 bit number, so the number of possible RGB colors is about
17 million (= 256°). Color liquid crystal display (LCD) screens, such as the
ST7735 TFT LCD screen described in Chapter 13, use 16-bit color definition,
with the R, G, and B components converted from three 8 bit numbers into

a single 16-bit number, resulting in 2'° = 65536 possible colors. The last
three bits of the R and B components are dropped, but only the last two bits

264



CHAPTER 14  SENSING COLORS

of the G component are dropped, as the human eye is more sensitive to
graduations of green compared to red and blue. The 16-bit number has 5 bits
for the red component, 6 bits for the green component, and 5 bits for the blue
component—the 565 format.

For example, the pale green color in Figure 14-3 has RGB format of
(95, 153, 66). The 8-bit binary representation for the R component of 95
is01011111. When the last three bits of the R component are dropped,
the remaining 5-bit representation is 01011. Similarly, the last three bits
of the B component of 01000010 are dropped resulting in the 5-bit binary
number of 01000. Only the last two bits of the G component are dropped
leaving 100110. When the 5-, 6-, and 5-bit R, G, and B components are
combined into a 16-bit number, the combined value is 0101110011001000.

Colors ? X
Standard Eu_sp m _“
Sl Cancel

|
Color model: | RGB v
Red: 95 |3 Nt
Green: 153 |2+
Current

Figure 14-3. Color palette

265



CHAPTER 14  SENSING COLORS

The decimal representation of the 16-bit 565-formatted RGB number is
23752 equal to

28 x [(0x27) + (1x25) + (0x2°) + (1x24) + (1x2%) + (1x22) + (0x2') + (0x2%)]
+[(1x27) + (1x25) + (0%x25) + (0x2%) + (1x2%) + (0x22) + (0x2') + (0x29)]
=28x92 +200

= 28 % [(5x2%) + 12] + [(12x2%) + 8]

Given that the numbers 10, 11, 12, 13, 14 and 15 have hexadecimal
representation of A, B, C, D, E and E then the 16 bit 565 formatted RGB
number corresponds to a hexadecimal representation of 0x5CC8.

A color is generally represented in 565 format as hexadecimal with
the example of the Adafruit_ILI9341.h file in the Adafruit IL19341 library,
as noted in Chapter 13. An advantage of the hexadecimal system is that a
color, defined as a 16-bit binary number in 565 format, can be represented
by four alphanumeric characters and that the number can easily be split
into two hexadecimal components. For example, in the pale green color in
Figure 14-3, the two components are 0x5C and 0xC8. As a comparison, the
hexadecimal representation of the original 24-bit number describing the
three RGB color components in Figure 14-3 is 0x5F9942, consisting of
the three hexadecimal numbers—5EF 99, and 42—that correspond to the
decimal numbers 95, 153, and 66.

To obtain the 5, 6 and 5-bit values, the three 8-bit R, G, and B
components are divided by 23, 22, and 23, respectively, which are then
multiplied by 2", 2°, and 2° to shift the values 11, 5, and 0 places “to the
left” and generate the 16-bit number.

The instruction is ((r/8) << 11) | ((g/4) << 5) | (b/8), asused
in Listing 14-1.

266



CHAPTER 14  SENSING COLORS

Color-Recognition Sensor

The color-recognition sensor TCS230 has an array of
64 photodiodes with red, blue, green, and clear color filters.

There are 16 photodiodes for each color filter and the
color-recognition sensor produces a square wave with the
frequency proportional to the light intensity of the relevant color.

The color-recognition sensor has two pairs of control pins with pin
states HIGH or LOW that determine which filter is activated and the scaling
of the output frequency (see Table 14-1). The output frequency scaling can
be set to 100% by connecting color-recognition sensor control pins S0 and
S1 to 5V (see Table 14-2). The status of color-recognition sensor control
pins S2 and S3 to activate a color filter is determined in the sketch.

Table 14-1. Control Pins of the Color-Recognition Sensor

Control Pins Control Pins

S2 S3 Photodiode Filter SO0 S1 Output Scalar
LOW LOW Red LOW LOW Power down
LOw HIGH Blue LOw HIGH 2%

HIGH LOW Clear HIGH LOW 20%

HIGH HIGH Green HIGH HIGH 100%

267



CHAPTER 14  SENSING COLORS

Table 14-2. Connections of the Color-Recognition Sensor

Color Sensor Pin Arduino Pin Color Sensor Pin Arduino Pin
GND  ground GND S3 Photodiode A5
OE output enable  notconnected  S2 Photodiode A4
S1 Output freq. 5V OUT  Output A3
S0 Output freq. 5V vce 5V

In Listing 14-2, the color-recognition sensor is calibrated by scanning
a white object and then a black object. Entering a <carriage return> at
the serial monitor signifies when each of the two calibration scans are
made. The color-recognition sensor output values, with the red, green,
or blue filters, for a white and a black image are of the order of 5 and 50,
respectively. An object is then scanned using the scan() function and the
color-recognition sensor output values with the red, green, and blue filters
are scaled to the range (0, 255) based on the calibration values. The three
scaled RGB components are combined and converted into a 16-bit
number representing the RGB compound color in the convertRGB()
function. A rectangle is then displayed on the ST7735 TFT LCD screen
filled with the RGB color (see Figure 14-4 and Table 14-3).

268



CHAPTER 14  SENSING COLORS

1.8" TFT it
‘ -

160x128

fritzing

Figure 14-4. Color-recognition sensor and TFT LCD screen

269



CHAPTER 14  SENSING COLORS

Table 14-3. Connections for Color-recognition
Sensor and TFT LCD Screen

Component Connect to
ST7735 TFT GND Arduino GND
ST7735 TFT CS Arduino pin 6
ST7735 TFT RESET Arduino pin 7
ST7735 TFT A0 Arduino pin 9
ST7735 TFT SDA Arduino pin 11
ST7735 TFT SCK Arduino pin 13
ST7735 TFT LED Arduino 3.3V
T€S230 GND Arduino GND
7CS230 S1 Arduino 5V
T€S230 SO Arduino 5V
TCS230 S3 Arduino pin A5
TCS230 S2 Arduino pin A4
TCS230 oUT Arduino pin A3
TCS230 vVee Arduino 5V

Listing 14-2. Color-recognition Sensor

#include <Adafruit_ST7735.h>  //include ST7735 library

#include <Adafruit GFX.h> // include GFX library
int TFT_CS = 6; // screen chip select pin
int DCpin = 9; // screen DC pin

int RSTpin = 7; // screen reset pin

// associate tft with Adafruit_ST7735 library

270



CHAPTER 14  SENSING COLORS

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);
unsigned int BLACK = 0x0000; // HEX code for black color

int S2 = A4; // color sensor pins
int S3 = As5;
int OUT = A3;

int calibrate = 0;
byte R, G, B, Rlow, Rhigh, Glow, Ghigh, Blow, Bhigh;

void setup()

{
Serial.begin(9600); // set baud rate for Serial Monitor
pinMode(S2, OUTPUT); // sensor pins S2 and S3 as output
pinMode(S3, OUTPUT);
pinMode(OUT, INPUT); // sensor pin OUT as input
tft.initR(INITR _BLACKTAB);  //Iinitialize screen
tft.fillScreen(BLACK); // fill screen in black

// print instructions to Serial Monitor
Serial.println("Select Newline option on Serial Monitor");
Serial.println("Calibrate WHITE, <enter> when ready");

}

void loop()
{

if (calibrate == 0) // calibrate white image

{

while (Serial.available()>0) //waitfor <enter> to be pressed

{

if(Serial.read() == "\n") // white calibration on <enter>

{
Rlow = scan(LOW, LOW); // red filter scan of white image
Glow = scan(HIGH, HIGH); //green filter scan of white image

Blow

scan(LOW, HIGH); // blue filter scan of white image

271



CHAPTER 14  SENSING COLORS

Serial.println("WHITE calibration complete");
Serial.println("to calibrate BLACK, <enter> when ready");

calibrate = 1; // flag WHITE has been calibrated
}
}
}
else if (calibrate == 1) // calibrate black image
{

while (Serial.available()>0) //wait for <enter> to be pressed

{

if(Serial.read() == '"\n') //black calibration on <enter>

{
Rhigh

scan(LOW, LOW);  //red filter scan of black image
Ghigh = scan(HICH, HIGH); // green filter scan of black image
Bhigh = scan(LOW, HICH); //blue filter scan of black image
Serial.println("BLACK calibration complete");
calibrate = 2; // flag BLACK has been calibrated
Serial.println("<enter> when ready for color scan");

}
}

}

else if(calibrate == 2)

{

while (Serial.available()>0) // wait for <enter> to be pressed

{

if(Serial.read() == "\n") // start scan on <enter>

{

scan(LOW, LOW); // red filter scan of image
map(R, Rlow, Rhigh, 255, 0); //scale red filter scan to
// low-high range
scan(HIGH, HIGH); // green filter scan of image
map(G, Glow, Ghigh, 255, 0); //scale green filter scan to

// low-high range

272



CHAPTER 14  SENSING COLORS

o]
1l

scan(LOW, HIGH); // blue filter scan of image
map(B, Blow, Bhigh, 255, 0); //scale blue filter scan to
// low-high range
unsigned int RGB = convertRGB(R,G,B); //convertto 16bit color
tft.fillRect(20,60,88,80,RGB); //fill screen rectangle with scanned color
// *** INSERT Listing 14-3 HERE

w
n

}
}
}
}

int scan(int level2, int level3) //function to scan image

{

digitalWrite(S2, level2); // set color sensor pins
digitalWrite(S3, level3);
unsigned int val = 0; // 1000 scans of image
for (int i=0; i<1000; i++) val = val + pulseIn(OUT, LOW);
val = val/1000.0; // average of 1000 scans
return val;

}

unsigned int convertRGB(byte r, byte g, byte b)

{ // convert three 8 bit numbers to 16 bit number
return ((r / 8) << 11) | ((g / 4) << 5) | (b / 8);

}

The sketch can be extended by displaying the calibration values on the
serial monitor and using the scaled RGB components to activate an RGB
LED to reproduce the scanned color, with the following instructions:

analoghirite(redLED, R);
analoghrite(greenLED, G);
analogWrite(blueLED, B);

273



CHAPTER 14  SENSING COLORS

The color name of the scanned object can be predicted based on the
RGB components of the scanned image, and displayed on the ST7735 TFT
LCD screen with an appropriately filled rectangle. For example, if the RGB
components satisfied the following condition:

if (R>200 88 G»>200) {color = OxFFEO; text = "YELLOW";}
tft.setTextColor(color);
tft.print(text);

Then, the text “YELLOW” in a yellow color is displayed beside a yellow-
filled rectangle on the ST7735 TFT LCD screen. The unsigned int color
and String text variables are defined at the start of the sketch. HEX codes
for colors were listed in Chapter 13. Listing 14-3 contains instructions for
predicting colors that are included in Listing 14-1 after the instruction.

tft.fillRect(20,60,88,80,RGB); //fill screen rectangle with scanned color.

Listing 14-3. Predicting Color with the Color-Recognition Sensor

if (R»220 88 G<150) {color = 0xF800; text = "RED "5}
else if (G>120 & R<100) {color = Ox07E0; text = "GREEN "51
else if (B>170 && R<150) {color = 0x001F; text = "BLUE "s1

else if (R>200 8& G>170) {color = OxFFEO; text = "YELLOW ";}
else if (R>200 && B>200) {color = OxF81F; text = "MAGENTA ";}
else if (G>170 && B>200) {color = OxO7FF; text = "CYAN "1
else {color = OxFFFF; text = "no color";}

tft.setTextSize(2);

tft.setCursor(20,20);

tft.setTextColor(color, BLACK);

tft.print(text);

The setTextColor(text color, background color) instruction
ensures that new text overwrites existing text, so it is not necessary to draw
a background rectangle over the existing text before writing the new text,
which must be at least as long as the existing text.

274



CHAPTER 14  SENSING COLORS

The angle of a servo motor can be based on the predicted color, so
that a pointer moves to indicate the color on a color arch. For example,
the color names and corresponding angles can be defined in the arrays
texts[] and angles|[ ], respectively, and the angle that the servo motor
moves through is determined by the predicted color (see Listing 14-4).

Listing 14-4. Move Servo According to Predicted Color

String texts[] = {"RED","GREEN","BLUE","YELLOW", "MAGENTA","CYAN"};
int angles[] = {0, 36, 72, 108, 144, 180};
for (int i=0; i<6; i++)

{
if(text == texts[i]) servo.write(angles[i]);
}
Summary

Red, green, and blue components of color are described and illustrated
with a RGB LED. The color-recognition sensor was used to scan a pattern
and reproduce the color of the pattern. The scanned color was categorized
by the sensor as belonging to one of a range of standard colors.

Components List

e Arduino Uno and breadboard
e RGB LED module
e Color-recognition sensor: TCS230

e TFTLCD screen: ST7735 1.8-inch

275



CHAPTER 15

Camera

The Arduino can support a camera, such as the OV7670
module, and display images on an ST7735 TFT LCD screen
(see Figure 15-1) with a frame transfer rate of 10 frames per

second (fps). The resolutions of the OV7670 camera and
ST7735 TFT LCD screen are 640x480 and 160x128 pixels,
respectively.

This chapter uses the LiveOV7670 library by Indrek Luuk. To access
the library, download the .zip file from github.com/indrekluuk/
LiveOV7670. Unzip the file and copy the LiveOV7670-master » src » lib
» LiveOV7670Library folder to the default Arduino libraries folder. The
Adafruit GEX library must be also installed using the Arduino IDE, as
outlined in Chapter 3, with installation method 3.

A sketch to capture digital images is accessed by copying the
LiveOV7670-master » src » LiveOV7670 folder to the desktop. Within the
Arduino IDE, compile and load the Desktop » LiveOV7670 » LiveOV7670.
ino sketch to display OV7670 camera images at 10fps on the ST7735
TFT LCD screen. Prior to displaying the camera images, a green screen
indicates correct connections between the OV7670 camera module and
the Arduino; otherwise, a red screen is displayed.

© Neil Cameron 2019 277
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_15


http://github.com/indrekluuk/LiveOV7670
http://github.com/indrekluuk/LiveOV7670

CHAPTER 15  CAMERA

0OV7670 camera

fritzing

Figure 15-1. OV7670 camera and ST7735 TFT LCD screen

278



CHAPTER 15  CAMERA

Magnified OV7670 camera images at 1fps can be displayed with the
sketch LiveOV7670 after a change to the tab setup.h. To locate the tab
setup.h, select the triangle below the serial monitor button, on the right-

hand side of the Arduino IDE to reveal a drop-down list of tabs. On line 31
of setup.h, change #define EXAMPLE 1 to #define EXAMPLE 2, then

compile and load the sketch LiveOV7670.

Pin connections of the OV7670 camera module to the Arduino
are given in Table 15-1. Note that the OV7670 camera module and
the ST7735 TFT LCD screen are both connected to 3.3V. The HREF
(horizontal reference) pin on the OV7670 camera module is not

connected, as VSYNC (vertical synchronized output) indicates the

start of a new frame and the number of pixels depends on the image
resolution. The OV7670 camera module SIOD (I12C data) and SIOC (12C
clock) pins are connected to Arduino I12C pins A4 (SDA) and A5 (SCL)

with 10k pull-up resistors to 3.3V.

Table 15-1. Connections for OV7670 Camera Module

Arduino 0V7670 camera module Arduino
3.3V GND

A5 — 10k 12C clock 12C data A4 — 10k
Pin 2 Vertical sync Horizon ref

Pin 12 Pixel clock System clock  Pin 3

Pin 7 Pin 6

Pin 5 Video parallel Video parallel  Pin4

Pin A3 Output Output Pin A2

Pin A1 Pin A0
3.3V Reset Power down  GND

279



CHAPTER 15  CAMERA

Pin connections between the ST7735 TFT LCD screen and the
Arduino depend on the particular ST7735 TFT LCD screen. The ST7735
TFT LCD screen used in this chapter and in Chapter 13 is denoted the
red screen in Table 15-2. Connections between another ST7735 TFT LCD
screen (denoted the blue screen in Figure 15-2) and the Arduino are also
shown in Table 15-2. The pin layout of the blue TFT LCS screen is given

in Table 15-3.

FEIL 3T _d_&_. 1L =

1.8TFT SPI 128%160 &

Figure 15-2. Red and blue ST7735 TFT LCD screens

280



CHAPTER 15  CAMERA

Table 15-2. Connections for Red and Blue ST7735 TFT LCD Screens

Arduino Red Screen Arduino Blue Screen
GND LED-

3.3V LED 3.3V LED+
Pin 9 CS

Pin 13 SCK Pin 13 SCK

Pin 11 SDA Pin 11 SDA

Pin 8 A0 or DC Pin 8 A0 or DC

Pin 10 RESET Pin 10 RESET

Pin 9 CS

GND GND

VCC

Table 15-3. Pin Layout of the Blue TFT LCD Screen

SD Card

LED- LED+ CS MOSI  MISO SCK
ST7735 TFT LCD Screen
CS SCK SDA A0 RESET NC NC NC VCC GND

Camera Image Capture Setup

The sketch LiveOV7670 has an image capture function, but a larger image
can be captured with code available at https://github.com/Kanaris/0V7670.
Both approaches require Java, with the 32-bit Java version used by the
github.com/Kanaris/0V7670 code and the 64-bit Java version used by
LiveOV7670. It is important not to mix 32-bit and 64-bit software.

281


https://github.com/Kanaris/OV7670

CHAPTER 15  CAMERA

To determine if a computer has a 32-bit or a 64-bit operating system,
select Control Panel » System and Security » System. The system type
is displayed. Note that 32-bit programs are stored in C: » Program Files
(x86), while 64-bit programs are stored in C: » Program Files.

In the setup instructions for the 32-bit version of Java, the Java version
number was 192, which was released in October 2018 (see Release Notes
on www.oracle.com/technetwork/java/javase/documentation/index.
html). If a different Java version number is installed, then replace the 192
version number in file names with the appropriate version number.

Download and install the Java SE Development Kit for Windows x86
from www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html.

The extracted files are saved in C: » Program Files (x86) » Java »
jdk1.8.0_192 and in C: » Program Files (x86) » Java » jrel.8.0_192.

Download the .zip file from github.com/Kanaris/0V7670. The grabber
folder contains the win32com.dll file. The src and lib folders contain the
comm.jar and javax.comm.properties files, respectively.

Copy win32com.dll to C: » Program Files (x86) » Java » jdk1.8.0_192
» jre » bin.

Copy comm.jar to C: » Program Files (x86) » Java » jdk1.8.0_192 »
jre > lib » ext.

Copy javax.comm.properties to C: » Program Files (x86) » Java »
jdk1.8.0_192 » jre » lib.

The src folder contains the com » epam folders, which contain BMP.
Jjava and SimpleRead.java. Paste the com folder to the desktop. The default
communication (COM) port in SimpleRead.java is set at COM9 and must
be changed to the appropriate port.

The COM port can be determined in the Arduino IDE by selecting
Tools » port.

282


https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://github.com/Kanaris/OV7670

CHAPTER 15  CAMERA

Or from the computer,

1. Select Control Panel » Hardware and Sound »
Device Manager under Ports (COM & LPT).

2. Open the Desktop » com » epam » SimpleRead.
Jjava file with a text editor.

3. Online 32,

if (portId.getName().equals("COM9")) {

change COM9 to the appropriate port; for example COM3.
4. Save the file.

The SimpleRead.java file is compiled in the Windows instruction
environment.

1. Right-click the Windows symbol at the bottom
left-hand side of the screen and select Run.

2. Enter cmd in the instruction line.
3. Select OK.
4. Inthe Window instruction environment, enter cd c:\.
5. Enter the desktop address; for example,
cd c:\Users\username\Desktop.

6. Enter javac com\epam\SimpleRead.java. This
creates the BMP.class and SimpleRead.class files in
the com » epam folder.

283



CHAPTER 15  CAMERA

7. Save the com folder in C: » Program Files (x86) »
Java » jdk1.8.0_192 » bin.

8. Create a folder named new on the C drive to store images.

Table 15-4 illustrates differences in the connections between the
0OV7670 camera module and the Arduino if images are viewed on an
ST7735 TFT LCD screen (see Figure 15-1) or if images are stored in the new
folder on the C drive of the connected computer (see Figure 15-3).

Table 15-4. Connections Between the OV7670 Camera Module and
Arduino

0V7670 Camera Module Images on Screen Images Stored
Connect to Arduino Connect to Arduino

VSYNC Pin 2 Pin 3

PCLK Pin 12 Pin 2

HREF --- Pin 8

XCLK Pin 3 Pin 11

A 4.7kQ pull-down resistor is also required for the system clock, XCLK,
with a second 4.7kQ resistor between the system clock and Arduino pin 11.
In Figure 15-3, changes to connections between the OV7670 camera
module and the Arduino, relative to Figure 15-1 are colored orange.

284



CHAPTER 15  CAMERA

OV7670 camera

resistors p
4.7kQ 3

=TI = s s »
L

@
9
L .ovov-!o.
resistors SEEBIVES il
10k S S e s e s o e
fritzing

Figure 15-3. Image capture with OV7670 camera

Capturing Camera Images

The .zip file downloaded from https://github.com/Kanaris/0V7670
contains the OV7670 » arduino folder with the arduino_uno_ov7670.ino
sketch by Siarhei Charkes. Compile and load the arduino_uno_ov7670
sketch. The built-in LED on pin 13 is turned on. After a short delay, the
Arduino TX LED flickers in pulses.

285


https://github.com/Kanaris/OV7670

CHAPTER 15  CAMERA

Image captures from the OV7670 camera is managed by the Windows

instruction environment.

1.

6.

Right-click the Windows symbol at the bottom left-
hand side of the screen. Select Run.

Enter cmd in the instruction line.
Select OK.
In the Window instruction environment, enter cd c:\.

Next, enter cd C:\Program Files (x86)\Java
jdk1.8.0_192\bin.

Then, enter java com.epam.SimpleRead.

The Arduino TX LED is turned off, then after a short delay, the Arduino
TX LED is turned on in pulses, as images are captured.

Open the new folder on the C drive, which was created to store images.

The 240x320 pixel images with 24-bit depth are available to view as they

are captured. The first few images can be disregarded as the OV7670

camera module adjusts to the surrounding light. Figure 15-4 shows the

Windows commands to save images on the C drive, with an example image

shown in Figure 15-5.

286



CHAPTER 15  CAMERA

B C:\WINDOWS\system32\cmd.exe - java com.epam.SimpleRead
Microsoft Windows [Version 18.8.17134.487]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\neil>cd Desktop
C:\Users\neil\Desktop>javac com\epam\SimpleRead.java
C:\Users\neil\Desktop>cd C:\Program Files (x86)\Java\jdk1.8.@_192\bin

C:\Program Files (x86)\Java\jdkl1.8.0_192\bin»>java com.epam.SimpleRead
Port name: COM3
Looking for image
Found image: @
Saved image: 1
Looking for image
Found image: 1
Saved image: 2
Looking for image
Found image: 2
Saved image: 3
Looking for image
Found image: 3
Saved image: 4
Looking for image
Found image: 4

Figure 15-4. Capturing OV7670 camera images

Figure 15-5. Example image

287



CHAPTER 15  CAMERA

Two changes to the arduino_uno_ov7670 sketch may improve the
quality of the captured images. On line 602 of the sketch, wrReg(0x11, 12),
the second parameter can be changed from 12to0 9, 10, 11, or 13. Also, on
line 549, increasing the time delay between image captures from 3000ms to
5000ms can improve the quality of captured images.

Summary

Digital images at 10 frames per second were displayed on a TFT LCD
screen using the OV7670 camera module. Digital images from the camera
module were stored on a computer connected to the Arduino, which
required the installation of Java files.

Components List
e Arduino Uno and breadboard
e Camera module: OV7670
e TFTLCD screen: ST7735 1.8-inch

e Resistors: 2x 4.7kQ and 2x 10k

288



CHAPTER 16

Bluetooth
Communication

Bluetooth is a wireless technology for short distance
communication between devices with short
wavelength radio waves and operating at 2.4GHz.

Bluetooth is used for hands-free car phones,
streaming audio to headphones, data transfer, and communication
between devices. The HC-05 Bluetooth module mounted on a breakout
board is recommended, as the module itself does not have connecting
pins. The HC-05 module communicates by Bluetooth Serial Port Profile
(SPP) with a coverage distance of up to 10m.

The HC-05 Bluetooth module can be powered from 3.6V to 6V,
given the HC-05’s 5V to 3.3V voltage regulator, but the transmit (TXD)
and receive (RXD) serial data communication function at 3.3V. The
Arduino receiver pin (RX) interprets a voltage of 3.3V as HIGH, so the
HC-05 TXD pin can be directly connected to the Arduino RX pin. The
Arduino transmit pin (TX) has a 5V output, so a logic level converter
or a voltage divider, as outlined in Chapter 3 using 4.7k and 10k
resistors, reduces the voltage to the HC-05 RXD pin to 3.4V. Both
options, a logic level converter or a voltage divider, are displayed in
Figure 16-1 and given in Tables 16-1 and 16-2. A logic level converter
is preferable to a voltage divider, as the signal capacitance and the

© Neil Cameron 2019 289
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_16



CHAPTER 16  BLUETOOTH COMMUNICATION

voltage divider resistors form a resistor-capacitor filter that rounds the
edge of the digital signal, which can impact performance of the device
receiving the signal.

:  resistor to GND
10k

: resistor to Arduing TAD
P i v ]
&a— )l nu)
a—iae

5V side LED resistors 3.3V side LED resistors
2200 2200

fritzing

Figure 16-1. HC-05 Bluetooth module, logic level converter, and
voltage divider

The Arduino uses serial communication to upload a compiled sketch.
During uploading, the Arduino RX pin must be disconnected, or uploading
fails and the FRSSESERIFIIERIE T AIEA message is displayed.

Remember to reconnect the Arduino RX pin after the sketch has
compiled.

290



CHAPTER 16 BLUETOOTH COMMUNICATION

Table 16-1. Connections for Bluetooth Module with Logic Level
Converter (LLC)

Component Connect to High side LLC Connect to
Bluetooth VCC Arduino 3.3V

Bluetooth GND Arduino GND

Bluetooth TXD LLC low voltage TX  LLC high voltage TX  Arduino pin 0 RX
Bluetooth RXD LLC low voltage RX  LLC high voltage RX  Arduino pin 1 TX
LLC low voltage ~ Arduino 3.3V

LLC high voltage  Arduino 5V

LLC GND Arduino GND

LED long legs Arduino pins 3, 4

LED short legs 220Q resistors Arduino GND

Table 16-2. Connections for Bluetooth Module with

Voltage Divider

Component Connect to and to
Bluetooth VCC Arduino 5V

Bluetooth GND Arduino GND

Bluetooth TXD Arduino pin 0 RX

Bluetooth RXD 4.7kQ resistor Arduino pin 1 TX
Bluetooth RXD 10kQ resistor Arduino GND
LED long legs Arduino pins 3, 4

LED short legs 22042 resistors Arduino GND

291



CHAPTER 16~ BLUETOOTH COMMUNICATION

There are several Bluetooth communication applications that can
be downloaded from Google Play for an Android tablet to communicate
with an Arduino using Bluetooth. The Bluetooth Terminal HC-05
app, by Memighty, and the ArduDroid app, by Hazim Bitar, are
both recommended. The two apps have similar functions, with the
ArduDroid app also having a PWM facility. Examples are given of
the two apps to control LEDs and display text on the tablet or serial
monitor, with the ArduDroid app also controlling LED brightness
with PWM.

After compiling a sketch, the HC-05 module LED flashes five times
a second, waiting to be paired to a device. Turn on the Android tablet’s
Bluetooth, open the Bluetooth Terminal HC-05 or ArduDroid app and scan
for new devices. Pair the HC-05 module with the Android tablet, using
the password of either 1234 or 0000. When paired with the Android tablet,
the HC-05 module’s LED flashes every two seconds, indicating that the
module is paired with a device.

Bluetooth Terminal HC-05 App

In the Bluetooth Terminal HC-05 app, button settings can be configured
with a long press to enter the Button Name and the corresponding ASCII
Command letter. For example, Button names of Red LED on, Green LED
on, and Both LED:s off can be configured with Command letters R, G, and
O, respectively (see Figure 16-2). Pressing a Bluetooth Terminal HC-05
app button turns LEDs on or off, with a corresponding message displayed
on the Bluetooth Terminal HC-05 app. If the serial monitor is open, then
the message is also displayed on the serial monitor. Command letters can
also be typed into the Enter ASCII Command box followed by Send ASCII.
The Send ASCII button (see Figure 16-3) must be configured, with a long
press, to end the sent data with a line feed, \n, character, so that text can be
entered with the Send ASCII button.

292



CHAPTER 16 BLUETOOTH COMMUNICATION

Bluetooth Terminal HC-05

ASCIl ¢
Connected to HC-05

Red LED on

LED on
EDs off
Red LED on

Auto Scroll
asci: R
ascii G
asci. O
asci: R

Enter ASCIl Command Send ASCII
I T T T

Figure 16-2. Bluetooth Terminal HC-05

Button Settings

Button Name : I Red LED on ]

@ ASCI HEX

Command : I R I

\r - CR (Carriage Return) v

\n - LF (Line Feed) v
Figure 16-3. Bluetooth Terminal HC-05 button setup to control LEDs

Listing 16-1 turns LEDs on or off using Bluetooth communication
between an Android tablet with the Bluetooth Terminal HC-05 app and the
Arduino. Use of switch case instructions rather than if else instructions
is outlined in Chapter 6. The default case is included for Command letters
other than R, G, and O.

293



CHAPTER 16  BLUETOOTH COMMUNICATION

Listing 16-1. Bluetooth Terminal HC-05 App

int redLED = 3; // LED pins
int greenLED = 4;
char c; // command letter input

void setup()

{
Serial.begin(9600); // set baud rate for Serial Monitor
pinMode(redLED, OUTPUT); // define LED pins as OUTPUT
pinMode(greenLED, OUTPUT);

}

void loop()

{

while (Serial.available()>0) //when data in Serial buffer

{

c = Serial.read(); // read character from Serial buffer
switch (c) // use switch...case for options

{

case 'R':

digitalWrite(redLED, HIGH); //red LED on
Serial.println("red LED on"); //and print message to Serial
break;

case 'G':
digitalWrite(greenLED, HIGH); //green LED on
Serial.println("green LED on");
break;

case '0':
digitalWrite(redLED, LOW); // both LEDs off
digitalWrite(greenLED, LOW);
Serial.printIn("both LEDs off");
break;

294



CHAPTER 16 BLUETOOTH COMMUNICATION

default: break; // instruction letter not R, G or O

}
}
}

ArduDroid App

The ArduDroid app has 12 buttons consistent with Arduino digital pins 2
to 13 and six sliders matching Arduino PWM pins 3, 5, 6, 9, 10, and 11.
The SEND DATA and GET DATA panels allow alphanumeric characters
to be sent from or received by the ArduDroid app (see Figure 16-4). A

baseline sketch accompanying the ArduDroid app can be downloaded
from www.techbitar.com.

ArduDroid by TechBitar

SEND DATA

GET DATA

b b O ¢

Figure 16-4. ArduDroid

295


http://www.techbitar.com

CHAPTER 16~ BLUETOOTH COMMUNICATION

When an ArduDroid app button is pressed, or a slider is changed,
or the SEND DATA button pressed, a control sequence is sent by the
ArduDroid app to the Arduino using Bluetooth communication (see
Table 16-3). The control sequence is the command number, prefixed by
the * character, the Arduino pin number, the pin value, the alphanumeric
text and the end character #. Control variables are separated by the |
character. For example, pressing the ArduDroid app button 03 has the
control sequence *10|03|02# or *10|03|03#, changing the ArduDroid app
slider for PWM pin 06 to position 125 has the control sequence *11|06]|125#
and sending the text “ABC123” with SEND DATA has control sequence
*12|199|99|ABC123#.

Listing 16-2 displays the control sequences of the ArduDroid app and
has a 5ms delay between reading character input, so the sliders should be
“pressed” rather than “slid””

Table 16-3. Control Sequence of ArduDroid App

ArduDroid App Command Arduino Pin Value  Alphanumeric

Button 10 Digital pin 20r3
Slider 11 PWM pin 0-255
SEND DATA 12 99 99 Text

Listing 16-2. Control Sequence of ArduDroid App

int val[3]; // command, Arduino pin and pin value
const int bufferSz = 30; // const int required to define array size
char data[bufferSz]; // alphanumeric data including | and #
char c;

int flag = 0;

int index;

296



CHAPTER 16 BLUETOOTH COMMUNICATION

void setup()

{
Serial.begin(9600); // set baud rate for Serial Monitor
}
void loop()
{
readSerial(); // function to read control sequence
if(flag == 1) // if control sequence read
{
for (int i=0; i<3; i++)
{ // display three control variables
Serial.print(val[i]);Serial.print(" ");
} // display alphanumeric data
for (int i=0; i<bufferSz; i++) Serial.print(data[i]);
Serial.println("");
}
flag = 0; // reset flag for new control sequence

// overwrite data with null character
for (int i=0; i<bufferSz; i++) data[i]="\0';

index = 0; // reset data index to zero
}
void readSerial() // function to read control sequence
{

while (Serial.available()»0) //when character in Serial buffer

{

if(flag == 0) // new control sequence
{
c = Serial.read(); // read character from Serial buffer
// parse three control variables
for (int i=0; i<3; i++) val[i]=Serial.parseInt();
flag = 1; // control sequence read

}

297



CHAPTER 16~ BLUETOOTH COMMUNICATION

c = Serial.read(); //read character from Serial buffer
delay(5); // delay 5ms between characters
// increment data and add next character
if(c = "|" 88 c != '#') data[index++] = c;
}
}

The ArduDroid app is used to control the brightness of the LED
on pin Arduino 3 using ArduDroid slider 3 and control the LEDs on
Arduino pins 3 and 4 using the ArduDroid app buttons or alphanumeric
text (R for red LED on, G for green LED on and O for both LEDs off).
The sketch builds on Listing 16-2, with the LED pins defined at the start
of the sketch.

int redLED = 3; // red and green LED pins
int greenlED = 4;

The LED pin OUTPUT status in the void setup() function.

pinMode(redLED, OUTPUT); // define LED pins as output
pinMode(greenLED, OUTPUT);

Listing 16-3 contains the updated void loop() function.

Listing 16-3. ArduDroid App (2)

void loop()

{
readSerial(); // function to read control sequence
if(flag == 1) // if control sequence read
{
switch (val[o]) // switch ... case based on instruction
{
case 10: // turn red or green LED on or off
digitalWrite(val[1],!digitalRead(val[1]));
break;

298



CHAPTER 16~ BLUETOOTH COMMUNICATION

case 11: // change red LED brightness
analoghrite(val[1],val[2]);
break;

case 12: // R: turn red LED on

if(data[o] == 'R') digitalWrite(redLED, HIGH);

// G: turn green LED on
else if (data[o] == 'G") digitalWrite(greenLED, HIGH);
else if (data[o] 0') // O: turn both LEDs off
{

digitalWrite(redLED, LOW);
digitalWrite(greenLED, LOW);

}
break;
default: break; // default case
}
}
flag = 0; // reset flag to zero

for (int i=0; i<10; i++) data[i]='\0'; //overwrite previous data
index = 0; // reset data index to zero

Additional functionality can be allocated to the ArduDroid app pins
by editing the relevant switch case section of the sketch. For example,
to flash the green LED several times when the ArduDroid app pin 5 is
pressed, Listing 16-4 includes the changes to case 10 of Listing 16-3.

Listing 16-4. ArduDroid App (3)

case 10:
if(val[1] == 3 || val[1] == 4) //turnLED 3 or 4 on or off
digitalWrite(val[1],!digitalRead(val[1]));
else if(val[1] == 5)
{
for (int i=0;i<10;i++)
{ // turn green LED on and off five times

299



CHAPTER 16~ BLUETOOTH COMMUNICATION

digitalWrite(greenLED, !digitalRead(greenLED));
delay(500); // delay 500ms

}
}

break;

Message Scrolling with MAX7219 Dot
Matrix Module

The MAX7219 dot matrix module manages the
8x8 dot matrix display for turning LEDs on and

off to display alphanumeric characters and scroll
messages. Displaying and scrolling characters on
an 8x8 dot matrix display with two 74HC595 shift registers was described
in Chapter 7. Several MAX7219 dot matrix modules can be daisy-chained
to make longer LED displays, while still only requiring three connections
between the 8x8 dot matrix displays and the Arduino. The MAX7219
module uses Serial Peripheral Interface (SPI), outlined in Chapter 11,

and modules are daisy chained by connecting the Chip Select (CS or SS

or LOAD), MOSI (DATA or DIN), and serial clock (SCK or CLK) pins at

the OUT end of one module to the IN end of the next module. Two daisy-
chained MAX7219 modules are shown in Figure 16-5, with connections in
Table 16-4.

300



CHAPTER 16 BLUETOOTH COMMUNICATION

o000OOOIONS 90000000
MAX7219

fritzing
Figure 16-5. MAX7219 modules
Table 16-4. Connections for MAX7219 Modules

Component Connect to
MAX7217 VCC External 5V
MAX7219 GND Arduino GND
MAX7219 DIN Arduino pin 11
MAX7219 CS Arduino pin 10
MAX7219 CLK Arduino pin 13

The MAX7219 module contains a 10kQ SMD (surface-mounted
device) resistor to restrict LED brightness. Displaying text and patterns on
four MAX7219 modules requires currents of at least 140mA, so MAX7219
modules must be powered by an external power source and not by the
Arduino. In Figure 16-5, the MAX7219 modules are externally powered
with 5V. The L4940V5 voltage regulator, as described in Chapter 8, reduces
the external 9V supply from a battery to 5V to power the MAX7219 modules.
Alternatively, a 5V powerbank can be used as the external 5V supply.

301



CHAPTER 16~ BLUETOOTH COMMUNICATION

MAX7219 and Bluetooth Terminal
HC-05 App

The MAX7219 display libraries: MD_Parola and MD_MAX72XX by Majic
Designs are available through the Arduino IDE, using installation method 3,
as outlined in Chapter 3. MD_Parola and MD_MAX72XX library version
3.0.0 were used in the sketches. The MAX7219 display module must be
defined in a sketch, with the options being PAROLA_HW, GENERIC_HW,
ICSTATION_HW, and FC16_HW. For the MAX7219 display module used in
the chapter, the FC16_HW option was appropriate.

The MD_MAX72xx_Test example sketch in the MD_MAX72X library
provides a comprehensive display of the MAX7219 module functionality.
Before compiling the sketch, the hardware type and number of MAX7219
modules must be defined in lines 25 and 26.

#define HARDWARE TYPE MD MAX72XX::FC16 HW
#define MAX DEVICES 4

Listing 16-5 scrolls a message on four daisy-chained 8x8 dot matrix
displays with the message transferred from the Bluetooth Terminal
HC-05 app to the Arduino with Bluetooth communication. The Send
ASCII button must be configured, with a long press, to end the sent
data with a line feed, \n, character, so that text can be entered with the
Send ASCII button (see Figure 16-3). When a new message is available,
the current message is replaced with the null character, \0, to avoid a
shorter new message including the non-overlapping part of the current
message. The tidyUp variable ensures that new messages are updated,
but not when a change display speed character is received by the
Arduino.

Note that in Listings 16-5 and 16-7, characters are bracketed with a
single apostrophe ('), while strings have a double apostrophe (").

302



CHAPTER 16 BLUETOOTH COMMUNICATION

The display speed is the inverse of the frame delay time, with a
longer frame delay time resulting in a slower message display speed.
The message display speed is changed using buttons on the Bluetooth
Terminal HC-05 app configured with button names slow and fast to
send characters - and + with no carriage return nor line feed characters
selected (see Figure 16-6).

Button Settings

Button Name : | fast |

@ ASCIll HEX

Command : | + |

\r - CR (Carriage Return)

\n - LF (Line Feed)

Cancel Save

Figure 16-6. Bluetooth Terminal HC-05 button setup to control
display speed

Listing 16-5. Message Scrolling with MAX7219 Modules and
Bluetooth Terminal HC-05 App

#include <SPI.h> // include SPI library
#include <MD_Parola.h> // include MD_Parola library
#include <MD_MAX72xx.h> // include MAX72xx library
#define HARDWARE _TYPE MD MAX72XX::FC16 HW // MAX7219 module type
int devices = 4; // number of MAX7219 modules
int CSpin = 10; // chip select pin for SPI
// associate parola with MD_Parola library
MD Parola parola = MD_Parola(HARDWARE TYPE, CSpin, devices);

int frameDelay = 20; // initial frame speed
const int bufferSz = 60; // array must be sized with a const
char message[bufferSz]; // message currently displayed

303



CHAPTER 16  BLUETOOTH COMMUNICATION

char newMessage[bufferSz]; //new message to be displayed

char c; // character input
int index; // number of characters in message
int flag = 0;
void setup()
{
Serial.begin(9600); // set baud rate for Serial Monitor
parola.begin(); // start MD_Parola

parola.displayClear();
parola.displaySuspend(false);
parola.displayScroll(message, PA LEFT, PA SCROLL LEFT, frameDelay);
strcpy(message, "Enter message");  // copies text to message

// use buttons to change message speed
Serial.println("Send + to speed up or - to slow down");
Serial.println("\nType a message to scroll"); //display message on Serial

}
void loop()

{
readSerial(); // function to get new message
if(flag == 1) // new message
{ // replace with null character
for (int i=index;i<bufferSz-1;i++) newMessage[i]= '\0';
strcpy(message, newMessage); //copynewMessage to message
Serial.print("Message: ");Serial.println(message); // display message
flag = 0; // reset flag and index
index = 0;
} // scroll message
if (parola.displayAnimate()) parola.displayReset();
}

304



void readSerial()

{

}

CHAPTER 16~ BLUETOOTH COMMUNICATION

// function to get new message

while (Serial.available()>0) // when data in Serial buffer

{

}

c = Serial.read(); //read character from Serial buffer
// new line at end of new message

if ((c == '\n") || (index >= bufferSz-2)) flag = 1;

else if(c == "+")

{ // increase speed by reducing frame delay
frameDelay=parola.getSpeed()-5;
if(frameDelay < 20) frameDelay = 20;
Serial.print("Reduce delay to "); //display faster "speed"
Serial.println(frameDelay);

parola.setSpeed(frameDelay); // change display speed
flag = 0; // message unchanged

}

else if(c == '-")

{ // decrease speed by increasing frame delay

frameDelay=parola.getSpeed()+5;

Serial.print("Increase delay to "); //display slower "speed"
Serial.println(frameDelay);

parola.setSpeed(frameDelay);

flag = 0;

}

else

{
delay(5s); // delay 5ms between characters
newMessage[index++] = c; // save next char to new message
flag = 0;

}

305



CHAPTER 16~ BLUETOOTH COMMUNICATION

Message Speed and Potentiometer

An alternative to controlling the speed of the display with a command
from the Bluetooth Terminal HC-05 app is to use the output voltage from
a potentiometer. The newSpeed() function is called from within the void
loop() function and the potentiometer pin declared as int potPin = Ao,
for example. Listing 16-6 includes the newSpeed() function for controlling
display speed with a potentiometer.

The two else sections of the readSerial() function in Listing 16-5,
else if(c == '+') andelse if(c == '-') are deleted. The
potentiometer signal pin is connected to Arduino pin A0, with the
other potentiometer pins connected to Arduino 5V and GND (see
Figure 16-7).

fritzing

Figure 16-7. MAX7219 speed and potentiometer

306



CHAPTER 16 BLUETOOTH COMMUNICATION

Listing 16-6. MAX7219 Speed and Potentiometer

void newSpeed() // function to set the speed

{

frameDelay = map(analogRead(potPin), 0, 1023, 20, 100);
frameDelay = constrain(frameDelay, 20, 100); //constrain speed: 20 to 100
parola.setSpeed(frameDelay); //speed isthe delay between frames

}

The constrain() function follows the map() function to ensure that
the value of frameDelay is constrained within the limits of 20 and 100.
If the value of frameDelay was less than 20 or greater than 100 following
the map () function, then the constrain() function would set the value of
frameDelay to 20 or 100, respectively.

MAX7219 and ArduDroid App

As noted at the start of the chapter, the ArduDroid app sends a control
sequence to the Arduino by Bluetooth communication, which includes
the message to be displayed. Listing 16-7 is similar to Listing 16-5 for the
Bluetooth Terminal HC-05 sketch, with the main difference in the parsing
of commands.

Listing 16-7. Message Scrolling with MAX7219 Modules and
ArduDroid App

#include <SPI.h> // include SP1 library
#include <MD_Parola.h> // include MD_Parola library
#define HARDWARE TYPE MD MAX72XX::FC16 HW
int devices = 4; // number of MAX7219 modules
int CSpin = 10; // chip select pin for SPI
// associate parola with MD_Parola library
MD_Parola parola = MD_Parola(HARDWARE TYPE, CSpin, devices);

307



CHAPTER 16  BLUETOOTH COMMUNICATION

int val[3];

int frameDelay = 20; // initial frame speed
const int bufferSz = 60; // array must be sized with a const
char message[bufferSz]; // message currently displayed
char newMessage[bufferSz]; //new message to be displayed
char c; // character input
int index; // number of characters in message
int flag = 0;
void setup()
{
Serial.begin(9600); // set baud rate for Serial Monitor
parola.begin(); // start MD_Parola

}

parola.displayClear();
parola.displaySuspend(false);
parola.displayScroll(message, PA LEFT, PA SCROLL LEFT, frameDelay);
strcpy(message, "Enter message"); // copies text to message

// use buttons to change message speed
Serial.println("Send + to speed up or - to slow down");

// display message on Serial Monitor
Serial.println("\nType a message to scroll");

void loop()

{

readSerial(); // function to get new message
if(flag == 1) // new message
{ // replace with null character
for (int i=index;i<bufferSz-1;i++) newMessage[i]= '\0';
strcpy(message, newMessage); //copynewMessage to message
// display message on Serial Monitor
Serial.print("Message: ");Serial.println(message);
flag = 0; // reset flag and index
index = 0;
} // scroll message

308



CHAPTER 16 BLUETOOTH COMMUNICATION

if (parola.displayAnimate()) parola.displayReset();
}

void readSerial() // function to get new message
{
while (Serial.available()>0) //when data in Serial buffer
{
if(flag == 0) // new control sequence
{
c = Serial.read(); // read character in Serial buffer
// parse 3 integers 12, 99 and 99
for (int i=0;i<3;i++) val[i] = Serial.parseInt();

flag = 1; // control sequence read
}
c = Serial.read(); // read character from Serial buffer
delay(5); // delay 5ms between characters
if(c == "+") // increase speed
{

¢ = Serial.read(); // read end of control sequence

frameDelay=parola.getSpeed()-5; //reduce frame delay
if(frameDelay < 20) frameDelay = 20;
Serial.print("Reduce delay to "); //display faster "speed"
Serial.println(frameDelay);

parola.setSpeed(frameDelay); // change display speed
flag = 0; // message unchanged

}

else if(c == '-") // decrease speed

{
c = Serial.read(); // read end of control sequence
frameDelay=parola.getSpeed()+5; // increase frame delay

Serial.print("Increase delay to "); //display slower "speed"
Serial.println(frameDelay);

parola.setSpeed(frameDelay);

flag = 0;

} // save next char to new message

309



CHAPTER 16  BLUETOOTH COMMUNICATION

else if((c !'= "|") & (c != "#')) newMessage[index++] = c;
}
}

Summary

The Bluetooth HC-5 module was used to communicate between the
Arduino and an Android tablet using the Bluetooth Terminal HC-05
and ArduDroid apps. Devices can be controlled through Bluetooth
communication, such as controlling LEDs and changing the LED
brightness. Text entered on the Android tablet was scrolled across
several MAX7219 dot matrix modules, with the scrolling speed
controlled as a command within the Bluetooth Terminal HC-05

and ArduDroid apps or by converting the output voltage from a
potentiometer to the scrolling speed.

Components List

e Arduino Uno and breadboard

e Bluetooth module: HC-05

e LED

e Resistor: 22002

o Potentiometer: 10kQ2

o Logiclevel converter

e Dot matrix 4-unit module: MAX7219
e Battery: 9V

e Voltage regulator: L4940V5

e Capacitors: 0.1pF and 22pF

310



CHAPTER 17

Wireless
Communication

While Bluetooth communication is used between devices
’ less than 10m apart, communication over longer distances

is possible using wireless transceiver modules. The greater
distance between wireless transceiver modules or between a wireless
transceiver module and the Arduino enables access to remote sensors
and control of remote devices. The nRF24L01 radio transceiver module
operates at 2.4GHz, the same frequency as Bluetooth, with 126 available
channels and baud rates of 250kbps, 1Mbps, and 2Mbps. The lower baud
rate may be more suitable for longer distances.

The nRF24L01 transceiver module communicates with the Arduino
using serial peripheral interface (SPI). The nRF24L01 module and
connections to Arduino pins are shown in Figure 17-1, with the GND
pin indicated by a square surround. The CE (transmit/receive) and
CSN (standby/active mode) pins can be connected to any Arduino pin,
but pins 7 and 8 are used in the sketches. The IRQ (interrupt) pin is not
connected. The nRF24L01 module must be connected to 3.3V and not
to 5V. Connections between the nRF24L01 module and the Arduino are
also given in Table 17-2.

© Neil Cameron 2019 311
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_17



CHAPTER 17 WIRELESS COMMUNICATION

GND | VvCC 3.3V

CE pin7 CSN pin8

SCK  pin 13 MOSI pin 11
MISO pin 12 IRQ

Figure 17-1. nRF24L01 pin connections

The RF24 library by J Coliz is required and installed using the Arduino
IDE with installation method 3, as outlined in Chapter 3. Communication
between nRF241.01 transceiver modules is through data pipes that require
an address, such as “Nodel” or “12” for each data pipe; a channel number
between 0 and 125; and a baud rate of 250kbps, 1Mbps, or 2Mbps. The
default address length is five characters, the default channel is 76, and the
default baud rate is 1Mbps.

Reception of transmissions from an nRF241.01 radio transceiver
module is improved if activity on the transmission channel is low. A low
activity channel can be identified by scanning all available channels for
carrier activity. In Listing 17-1, the carrier activity on each channel, over
several scans, is displayed on the serial monitor. A low activity channel can
then be selected with the setChannel () instruction, rather than using the
default channel.

Listing 17-1. Channel Scanning

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(7, 8); // associate radio with RF24 library
const int nChan = 126; //126 channels available

int chan[nChan]; // store counts per channel

int nScan = 100; // number of scans per channel
int scan;

312



CHAPTER 17 WIRELESS COMMUNICATION

void setup()

{
Serial.begin(9600); // define Serial output baud rate
radio.begin(); // start radio
}
void loop()
{
for (int i=0;i<nChan;i++) //for each channel
{
chan[i] = 0; // reset counter
for (scan=0; scan<nScan; scan++) // repeat scanning
{

radio.setChannel(i); // define channel

radio.startListening();

delayMicroseconds(128); //listen for 128ps

radio.stopListening();

if(radio.testCarrier()>0) chan[i]=chan[i]+1; // carrier on channel

}

} // format HEX for values <16 rather than <10
for (int i=0; i<nChan; i++) Serial.print(chan[i], HEX);
Serial.print("\n"); // carriage return

}

The channel number, baud rate, and power amplifier level are set
using the following instructions.

setChannel() channel number between 0 and 125 inclusive

setDataRate()  values RF24_250KBPS, RF24_1MBPS or RF24_2MBPS

setPALevel() values RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH or
RF24_PA_MAX

The default power amplifier level is RF24_PA_MAX.
The default or currently set channel number, baud rate and power
amplifier level are obtained using the following instructions.

313



CHAPTER 17 WIRELESS COMMUNICATION

getChannel() channel number

getDataRate() 2,0 or 1 for RF24_250KBPS, RF24_1MBPS or RF24_2MBPS

getPAlLevel () 0,1,20r3for RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH
or RF24_PA_MAX

On one channel, the nRF241.01 radio transceiver module can receive
data simultaneously from up to six different transmitting nRF24L01 radio
transceiver modules, with each data pipe having a different address.

Information transmitted by the nRF24L01 transceiver can be an
integer, a real number, text or a data structure containing a combination
of the three data types. To provide some generality, the sketches include a
data structure. The maximum size of a data structure is 32 bytes, with an
integer, real number or a character requiring 2, 4, and 1 bytes, respectively.
The named components of a data structure are defined and the data
structure is named.

For example, a data structure, named test, consists of two integers, a
real number, and a character string. The character string can be up to
24 characters, as the two integers and the real number account for eight of
the available 32 bytes. Listing 17-2 includes the instructions to define the
example data structure.

Listing 17-2. Example Data Structure

typedef struct // define data structure to include
{
int count; // an integer: count
int level = 5; // an integer: level defined as 5
float value; // areal number: value

char text[24] = "text"; //astringdefined as "text"
} dataStruct;
dataStruct test; // name the data structure as test

314



CHAPTER 17 WIRELESS COMMUNICATION

Each component can be individually accessed in the main sketch, for
example test.value = 2.3. The data structure is transmitted or received
using the name of the data structure with the radio.write(8test,
sizeof(test)) or radio.read(&test, sizeof(test)) instructions. The
parameters are equal to the data structure reference, &fest, and the size of
the data structure.

Transmit or Receive

Table 17-1 contains two sketches—one for the transmitter and one

for the receiver nRF241.01 module—to allow side-by-side comparison
of the sketches. The sketches transceive a data structure with an
incrementing integer and real number and a character string, to be
displayed on the serial monitor. The two sketches are similar except

for the openWritingPipe() and openReadingPipe() instructions, the
startListening() instruction for the receiving module and the write()
and read() instructions. Instructions in bold indicate the differences in
transmission related instructions between the transmitter and receiver
sketches. The maximum length of the character string is 26 characters,
given that the integer and real number account for 6 bytes of the data
structure, which has maximum size of 32 bytes.

315



CHAPTER 17 WIRELESS COMMUNICATION

Table 17-1. Transmit or Receive

Transmit nRF24L01 Receive nRF24L01
#include <SPI.h> #include <SPIl.h>
#include <RF24.h> #include <RF24.h>
RF24 radio(7, 8); RF24 radio(7, 8);
byte addresses[ ][6] = {"12"}; byte addresses[ ][6] = {"12"};
typedef struct typedef struct
{ {

int number; int number;

float value; float value;

char text[26] = "Transmission"; char text[26];
} dataStruct; } dataStruct;
dataStruct data; dataStruct data;
void setup() void setup()
{ {

Serial.begin(9600);
radio.begin(); radio.begin();

radio.openWritingPipe(addresses[0]); radio.openReadingPipe(0, addresses[0]);
radio.startListening();

} 1
void loop() void loop()
{ {

if(radio.available())
data.number = data.number+1;

data.value = data.value+0.1; {
radio.write(&data, sizeof(data)); radio.read(&data, sizeof(data));
delay(1000); Serial.print(data.text);Serial.print("\t");

Serial.print(data.number);Serial.print("\t");
Serial.printin(data.value);
}
} }

316



CHAPTER 17 WIRELESS COMMUNICATION

Information about the transmitted data structure can be displayed on
the serial monitor by defining the printflibrary, which is included in the
RF24 library, at the start of the sketch.

#include <printf.h> // include the printf library

Initializing the printflibrary and serial monitor in the void setup()

function.
printf begin(); // initialise the printflibrary
Serial.begin(9600); // set baud rate for Serial Monitor

With the print instruction included in the void loop() function.

radio.printDetails(); // display data structure information

Transmit and Receive

Bidirectional communication with nRF24L01 transceiver modules
requires two data pipes and two addresses with one address for writing
and reading on one nRF241.01 transceiver module and one address for
reading and writing on the second nRF24L01 transceiver module. Prior
to one nRF24L01 transceiver module writing, the stopListening()
instruction must be issued and the startListening() instruction must
be issued to the second nRF24L01 transceiver module prior to reading.
The situation is reversed with the second nRF24L01 transceiver module
writing and the first nRF24L01 transceiver module reading. An nRF241.01
transceiver with an LED is shown in Figure 17-2, with connections given
in Table 17-2.

317



CHAPTER 17 WIRELESS COMMUNICATION

fritzing

Figure 17-2. nRF24L01 transceiver module with LED

Table 17-2. Connections nRF24101 Transceiver Module with LED

Component Connect to and to
NRF24L01 GND Arduino GND

nRF24L01 CE Arduino pin 7

nRF24L01 SCK Arduino pin 13

nRF24L071 MISO Arduino pin 12

nRF24L01 VCC Arduino 3.3V

nRF24L01 CSN Arduino pin 8

nRF24L01 MOSI Arduino pin 11

LED long leg Arduino pin 5

LED short leg 220€ resistor Arduino GND

318



CHAPTER 17 WIRELESS COMMUNICATION

The sketches included in Table 17-3 build on the sketches in
Table 17-1. While the first nRF24L01 transceiver transmits the data
structure, data, the second nRF24L01 transceiver module transmits
an integer variable, led, with values 0 or 1, which the first nRF24L01
transceiver module uses to turn on or off the LED. Note that using
LED_BUILTIN on pin 13 for the LED is not possible, as pin 13 is used
by the Serial Clock (SCK) for SPI communication. Sketches to transmit
and receive a data structure or only a variable by the two nRF24L01
transceiver modules are again presented side-by-side for comparison in
Table 17-3, with instructions in bold indicating the transceiver related
differences between the transmit then receive or the receive then
transmit sketches.

Table 17-3. Transmit and Receive

Transmit then receive Receive then transmit
#include <SPl.h> #include <SPl.h>
#include <RF24.h> #include <RF24.h>
RF24 radio(7, 8); RF24 radio(7, 8);
byte addresses[ ][6] = {“12”, “14"}; byte addresses[ ][6] = {“12”, “14"};
typedef struct typedef struct
{ {

int number; int number = 1;

float value; float value;

char text[26] = “Transmission”; char text[26];
} dataStruct; } dataStruct;
dataStruct data; dataStruct data;
int led; intled =1;
int ledPin = 5;

(continued)

319



CHAPTER 17 WIRELESS COMMUNICATION

Table 17-3. (continued)

Transmit then receive Receive then transmit
void setup() void setup()
{ {
Serial.begin(9600);
radio.begin(); radio.begin();
radio.openWritingPipe(addresses[0]); radio.openReadingPipe(1, addresses[0]);
radio.openReadingPipe(1, radio.openWritingPipe(addresses[1]);
addresses[1]);
pinMode(ledPin, OUTPUT); }
1
void loop() void loop()
{ {
radio.stopListening(); radio.startListening();
data.number = data.number+1; if(radio.available())
data.value = data.value+0.1; {
radio.write(&data, sizeof(data)); radio.read(&data, sizeof(data));

Serial.print(data.text);Serial.print(“\t”);
Serial.print(data.number);
Serial.print(“\t”);
Serial.printin(data.value);

1

delay(500); delay(500);
radio.startListening(); radio.stopListening();
while(!radio.available()); led =1 - led;
radio.read(&led, sizeof(led)); radio.write(&led, sizeof(led));
if(led == 1) digitalWrite(ledPin, HIGH);
else digitalWrite(ledPin, LOW);
delay(500); delay(500);

1 1

320



CHAPTER 17 WIRELESS COMMUNICATION

A pair of nRF24L01 transceiver modules enable a sensor to be read by
one Arduino with the reading transmitted to a second Arduino to display
information on an LCD display or to activate a device. For example,
internal and external temperature can be simultaneously monitored with
one temperature sensor and the Arduino connected with an externally
positioned transmitting nRF241L.01 module, and a second temperature
sensor and the Arduino connected to an internally positioned receiving
nRF24101 module.

A different type of example uses the output voltage from a
potentiometer, which is converted to an angle and is transmitted to
an nRF241.01 receiver module connected to an Arduino. This moves a
servo motor through the required angle. The servo motor was described
in Chapter 8 (see Figure 8-1, Table 8-1, and Listing 8-1). Extending the
sketches in Table 17-3, the data structure incorporates the integer angle,
which requires 2 bytes, so the maximum size of the character array in
Table 17-3 is reduced by 2 bytes. The updated instructions to define the
data structures are shown in Table 17-4.

Table 17-4. Transmit and Receive (2)

Transmit then receive Receive then transmit
typedef struct typedef struct
{ {
int number; int number = 1;
int angle; int angle;
float value; float value;
char text[24] = “Transmission”; char text[24];
} dataStruct; } dataStruct;
dataStruct data; dataStruct data;

321


https://doi.org/10.1007/978-1-4842-3960-5_8#Tab1

CHAPTER 17 WIRELESS COMMUNICATION

In the “transmit then receive” sketch, the potentiometer reading on
Arduino pin A0 is mapped to the corresponding angle in the void loop()

function.

int potent = analogRead(A0); // read potentiometer value
data.angle = map(potent, 0, 1023, 0, 180); //convertto angle
data.angle = constrain(data.angle, 0, 180); // constrain angle value

In the “receive then transmit” sketch, the Servo library is installed, and
the servo pin is defined at the start of the sketch.

#include <Servo.h> // include the servo motor library
Servo servo; // associate servo with Servo library
int servoPin = 11; // servo motor pin =11

The servo motor initialized in the void setup() function with the
servo.attach(servoPin) instruction, and the servo motor rotated
in the void loop() function with the servo.write(data.angle)
instruction.

Summary

Wireless communication of numbers and text between transmitting and/
or receiving nRF24L01 modules was used to control devices, with the
examples of turning on or off an LED or remotely moving a servo motor

through an angle based on the transmitted output of a potentiometer.

322



CHAPTER 17 WIRELESS COMMUNICATION

Components List

Arduino Uno and breadboard: 2x

Wireless transceiver module: 2x nRF241.01
LED

Resistor: 220€2

Servo motor: SG90

Potentiometer: 10k€2

Battery: 9V

Voltage regulator: 1L4940V5

Capacitors: 0.1uF and 22pF

323



CHAPTER 18

Build Arduino

M In this chapter, we'll review the ATmega328P-PU 8-bit

microcontroller. It has three types of memory: 32kB ISP

(in-system programming) flash memory where sketches are

stored, 1kB EEPROM (electrically erasable programmable read-only
memory) for long-term data storage and 2kB SRAM (static random-
access memory) for storing variables when a sketch is running.
Information in flash memory and EEPROM is retained when power to
the microcontroller is removed.

There are three communication modes: a serial programmable USART
(universal synchronous and asynchronous receiver-transmitter), an SPI
(Serial Peripheral Interface) serial port, and a two-wire serial interface.
USART takes bytes of data and transmits the individual bits sequentially,
which requires transmit (TX) and receive (RX) communication lines.

SPI (outlined in Chapter 11) uses four communication lines: master-out
slave-in (MOSI), master-in slave-out (MISO), and serial clock (SCK), with
a separate slave select (SS) line for each device. The I12C communication
(outlined in Chapter 11) Two Wire Interface (TWI) bus uses two signal
lines: serial data (SDA) and serial clock (SCL).

© Neil Cameron 2019 325
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_18



CHAPTER 18  BUILD ARDUINO

The microcontroller has 13 digital general-purpose input/output
(GPIO) lines and six 10-bit (values between 0 and 2'°-1 = 1023)
analogue to digital converter (ADC) GPIO lines to convert the voltage
on a pin to a digital value. There are three timers with two 8-bit timers,
with values between 0 and 28-1 = 255, and one 16-bit timer, with values
between 0 and 2'°-1 = 65535, which are used by the delay() function
in a sketch or by pulse width modulation (PWM), as outlined in
Chapter 1.

The programmable watchdog timer with an internal oscillator
(outlined in Chapter 20) checks that the microcontroller is active, and it
resets the microcontroller if there is a malfunction. Internal and external
interrupts allow the main sketch to stop, while the interrupt service routine
(ISR) is completed, and then the main sketch continues.

There are five software selectable power-saving modes (outlined in
Chapter 21) and the microcontroller operates between 1.8V and 5.5V.

ATmega328P Pin Layout

The pin layout of the ATmega328P-PU, shown in Figure 18-1, is available
on the Arduino website (www.arduino.cc). There are three groups of
ports: PB, PC, and PD with 8, 7, and 8 pins, respectively, (see Table 18-1)
plus two ground (GND) pins, a 5V pin (VCC) with supply voltage (AVCC),
and analog reference voltage (AREF) pins for the analog-to-digital
converter (ADC).

326


http://www.arduino.cc

Arduino function

reset (PCINT14/RESET) PC6(]
digital pin 0 (RX) (PCINT16/RXD) PDO(]
digital pin 1 (TX) (PCINT17/TX0) PD10
digital pin 2 (PCINT18/NTO0) PD2(]
digital pin 3 (PWM) (PCINT19/0C2B/INT1) PD3[]
digital pin 4 (PCINT20/XCK/T0) PD4[]
vCC vee(
GND GND
crystal (PCINTB/XTAL1/TOSC1) PBG
crystal (PCINTZ/XTAL2/TOSC2) PB7(

digital pin 5 (PWM)  (PCINT21/0C0B/T1) PD5 (]
digital pin 6 (PWM) (PCINT22/0COA/AINO) PD6 (]
digital pin 7 (PCINT23/AIN1) PD7(]
digital pin 8 (PCINTO/CLKOACP1) PBO[]

Figure 18-1. ATmega328P pin layout

CHAPTER 18  BUILD ARDUINO

Arduino function
PC5 (ADCS/SCL/PCINT13) analog input §
PC4 (ADC4/SDA/PCINT12) analog input 4
PC3 (ADC3/PCINT11) analog input 3
PC2 (ADC2/PCINT10) analog input 2
PC1 (ADC1/PCINT9) analog input 1
PCO (ADCO/PCINTS) analog input 0
GND GND
AREF analog reference
AVCC vCC
PB5 (SCK/PCINTS) digital pin 13
PB4 (MISO/PCINT4) digital pin 12
PB3 (MOSI/OC2A/PCINT3) digital pin 11(PWM)
PB2 (SSIOC1BPCINT2)  digital pin 10 (PWM)
PB1 (OC1A/PCINT1) digital pin 9 (PWM)

The ATmega328P-PU pin nomenclature indicates the function of

each pin (see Figure 18-1). For example, pin change interrupts (PCINTO

to PCINT23) detect a change of pin state, as in a rising or a falling signal,

interrupt pins (INTO and INT1), analog-to-digital conversion pins (ADCO

to ADC5), serial communication (RXD and TXD), SPI communication
pins (SS, MOSI, MISO, and SCK), I2C communication pins (SCL and SDA),
timer0 (OCOA and OCOB), timerl (OC1A and OC1B), and timer2 (OC2A

and OC2B) (see Table 18-2), and Reset.

Table 18-1. ATmega328P-PU pins and Mapped Arduino Pins by Port

Port pins ATmega328P-PU Arduino pin

Function of Arduino pins

PBO-PB7 141019,9,10
PCO-PC6 1,231028

Digital 8 t0 13
Reset, AQ to A5
PDO - PD7 2t06,11t013 Digital 0 to 7

PWM -9,10,11,SPI-10to 13
ADC - A0 to A5, 12C - A4, A5

PWM - 3, 5, 6, Serial - 0, 1,
Interrupt 2, 3

327



CHAPTER 18  BUILD ARDUINO

Table 18-2. ATmega328P-PU Timers

Timer ATmega328P Bits Arduino PWM Frequency Functions

0 PD5,PD6 (11,12) 8 5and 6 ~976Hz delay, millis,
micros

1 PB1,PB2 (15,16) 16 9and 10 ~490Hz Servo library

2 PB3, PD3 (17, 5) 8 11and 3 ~490Hz tone

From Tables 18-1 and 18-2, the dual functionality of some pins means
that analoghrite() on Arduino PWM pins 9 and 10 is disabled by the
Servo library, on Arduino PWM pins 10 and 11 by SPI communication and
on Arduino PWM pins 3 and 11 by the tone() function.

Building an Arduino

m Building an Arduino provides a portable microcontroller
for projects not connected to a laptop and the low power

consumption of the microcontroller ensures that a project can run
for a long time on a battery. The required parts are an ATmega328P-
PU microcontroller, two 22pF ceramic capacitors, a clock crystal with
frequency 16MHz and a USB to serial UART (Universal Asynchronous
Receiver Transmitter) interface, such as the FT232R FTDI, which has a
switch to control the serial communication voltage to 3.3V or 5V.

The ATMega328P-PU microcontroller pin 1 has a semicircle indent
on the end and a dot on the left-hand side. The 16MHz clock crystal is
connected to the microcontroller with two 22pF ceramic capacitors, which
enable the crystal to start oscillating and microcontroller circuitry converts
the crystal into an oscillator (see Figure 18-2 and Table 18-3). A 10kQ pull-
up resistor is connected between microcontroller pin 1 and 5V to prevent
the microcontroller resetting, as Reset is active LOW. A switch is also

connected to microcontroller pin 1 for resetting the microcontroller.

328



CHAPTER 18  BUILD ARDUINO

LR IR B I B I

—

L]
- v s " e

resistor

10kQ

16MHz clock crystal
22pF capacitors

fritzing

Figure 18-2. Microcontroller setup

Table 18-3. Connections for Building an Arduino

Component Connect to and to
ATMega328P-PU pin 1 10kQ resistor Battery 5V
ATMega328P-PU pin 7 Battery 5V

ATMega328P-PU pin 8 GND

ATMega328P-PU pins 9, 10 16MHz clock crystal

ATMega328P-PU pins 9, 10 22pF capacitor GND
ATMega328P-PU pins 20, 21 Battery 5V

ATMega328P-PU pin 22 GND

Switch right leg ATMega328P-PU pin 1

Switch left leg GND

329



CHAPTER 18  BUILD ARDUINO

A USB to serial UART interface connects the microcontroller to
a computer or laptop for downloading a sketch. A 0.1pF electrolytic
capacitor is connected between the DTR (Data Terminal Ready) pin
on the USB to serial UART interface and the microcontroller Reset,
which resets the microcontroller to synchronize with the USB to serial
UART interface. Microcontroller serial communication RX and TX pins
are connected to the USB to serial UART interface TXD and RXD pins,
respectively. USB to serial UART interface and microcontroller VCC and
GND pins are connected (see Figure 18-3 and Table 18-4). The CTS (Clear
to Send) pin on the USB to serial UART interface is not connected to the
microcontroller.

capacitor resistor 16MHz clock crystal
100nF 10kQ 22pF capacitors

fritzing

Figure 18-3. Downloading a sketch

330



CHAPTER 18  BUILD ARDUINO

Table 18-4. Connections for Building an Arduino (2)

Component Connect to and to

0.1uF capacitor positive USB to serial UART DTR

0.1uF capacitor negative  ATMega328P-PU pin 1

USB to serial UART RXD ATMega328P-PU pin 3

USB to serial UART TXD ATMega328P-PU pin 2

USB to serial UART /CC ATMega328P-PU pin 7

USB to serial UART GND ~ ATMega328P-PU pin 22

LED long leg 220Q resistor ATMega328P-PU pin 19
LED short leg GND

To download a sketch onto the microcontroller, in the Arduino
IDE, from the Tools » Port menu, select the relevant communication
(COM) port and from the Tools » Board menu select Arduino/Genuino
Uno. The sketch is compiled in the Arduino IDE and then loaded to
the microcontroller with the USB to serial UART interface. When the
sketch is downloaded, the green and red LEDs of the USB-to-serial UART
interface TXD and RXD flicker.

The USB to serial UART interface can be removed and a 5V power
supply connected to the microcontroller (see Figure 18-4). An LED and
220kQ resistor are connected to microcontroller pin 19, equivalent to
Arduino pin 13, to run the blink sketch.

331



CHAPTER 18  BUILD ARDUINO

LED resistor N :

‘U AAA Battery 1

TR s EE sEewN '.tot '— Url
| WELLT=]

STTT T TETTLLTITTT j: 4 |- &

|ﬂ|J AAA Battery | 1

— ]
" Ausizeg Wy U|

resistor 16MHz clock crystal
10kQ 22pF capacitors

fritzing

Figure 18-4. Stand-alone microcontroller with LED

Installing the Bootloader

ATmega238P-PU microcontrollers require a bootloader for uploading and
running sketches from the Arduino IDE. When power is applied to the
microcontroller, the bootloader determines if a sketch is being uploaded,
and then loads the sketch into the microcontroller memory. If a sketch is
not being uploaded, then the bootloader instructs the microcontroller to
run the loaded sketch.

If the ATmega328P-PU microcontroller is not supplied with a
bootloader, then the bootloader must be uploaded. An Arduino can
upload the bootloader using SPI communication (see Figure 18-5 and
Table 18-5).

332



CHAPTER 18  BUILD ARDUINO

"TEEEE T I . T N
covssvsssliesemmosssscsseddeces
resistor 16MHz clock crystal
10kQ 22pF capacitors
fritzing

Figure 18-5. Installing bootloader

Table 18-5. Connections for Installing a Bootloader

Component

Gonnect to

Arduino pin 11
Arduino pin 12
Arduino pin 13
Arduino pin 10
Arduino 5V
Arduino GND

ATMega328P-PU pin 17
ATMega328P-PU pin 18
ATMega328P-PU pin 19
ATMega328P-PU pin 1
ATMega328P-PU pin 7
ATMega328P-PU pin 22

333



CHAPTER 18  BUILD ARDUINO

The Atmega_Board_Programmer by Nick Gammon is

recommended.

334

1.

Download the arduino_sketches-master .zip file from
github.com/nickgammon/arduino_sketches.

Extract the Atmega_Board_Programmer folder to the
desktop of a computer/laptop.

Connect an Arduino Uno to the computer or laptop.

In the Arduino IDE, from the Tools » Port menu,
select the relevant COM port.

From the Tools » Board menu, select Arduino/
Genuino Uno.

Open the serial monitor and select Both NL & CR
and 115200 baud.

Open the Atmega_Board_Programmer sketch and
select Compile and Load.

The serial monitor displays the following.

Atmega chip programmer.
Written by Nick Gammon.
Version 1.38

Compiled on May 22 2018 at 10:17:57 with Arduino
IDE 10805.

Attempting to enter ICSP programming mode ...
Entered programming mode OK.

Signature = Ox1E 0x95 0xOF


http://github.com/nickgammon/arduino_sketches

CHAPTER 18  BUILD ARDUINO

Processor = ATmega328P

Flash memory size = 32768 bytes.
LFuse = OxFF

HFuse = 0xDE

EFuse = OxFD

Lock byte = 0xCF

Clock calibration = 0x9D

Type ‘L’ to use Lilypad (8 MHz) loader, or ‘U’ for Uno
(16 MHz) loader ...

Enter U and the serial monitor displays:
Using Uno Optiboot 16 MHz loader.
Bootloader address = 0x7E00
Bootloader length = 512 bytes.

Type ‘Q’ to quit, ‘V’ to verify, or ‘G’ to program the
chip with the bootloader ...

Enter G and the serial monitor displays:
Erasing chip ...
Writing bootloader ...
Committing page starting at 0x7E00
Committing page starting at 0x7E80
Committing page starting at 0x7F00
Committing page starting at 0x7F80

Written.

335



CHAPTER 18  BUILD ARDUINO
Verifying ...
No errors found.
Writing fuses ...
LFuse = OxFF
HFuse = 0xDE
EFuse = OxFD
Lock byte = OXEF
Clock calibration = 0x9D
Done.
Programming mode off.
Type ‘C" when ready to continue with another chip ...

The bootloader is now loaded onto the microcontroller, which
is ready to receive a sketch after changing the COM port in the
Tools » Port menu.

Summary

The ATmega328P-PU microcontroller, which drives the Arduino
Uno, is described. An Arduino is built and a sketch is downloaded
to the microcontroller. Installation of the bootloader program to the

microcontroller is described.

336



CHAPTER 18

Components List

Arduino Uno and breadboard
Microcontroller: ATmega328P-PU
USB to UART interface: FT232R FTDI
Clock crystal: 16MHz

Capacitor: 2x 22pF ceramic

Resistor: 220€2 and 10k

Switch: tactile

LED

BUILD ARDUINO

337



CHAPTER 19

Global Navigation
Satellite System

Longitude, latitude, and altitude can be determined
from the global navigation satellite system (GNSS)
using radio signals transmitted by line-of-sight
satellites. GNSS includes the American GPS, Russian
GLONASS, European Union Galileo, Chinese
BeiDou, Japanese Quasi-Zenith, and satellite-based

augmentation satellite systems. The u-blox NEO-7M module used in this
chapter can receive signals from the GPS and GLONASS systems.

GNSS Messages on Serial Monitor

Signal reception by the u-blox NEO-7M module can be demonstrated
by connecting the u-blox NEO-7M module to a computer or laptop with
a USB to serial UART (Universal Asynchronous Receiver-Transmitter)
interface (see Figure 19-1 and Table 19-1), with the output voltage of
the USB to serial UART interface set at 3.3V for the u-blox NEO-7M
module. After loading the Arduino IDE, select a communication (COM)
port and open the serial monitor, at 9600 Baud, which displays the
GNSS messages.

© Neil Cameron 2019 339
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_19



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

[ | FTDI Basic
TX RX |

fritzing

Figure 19-1. GNSS receiver with USB to UART

Table 19-1. Connections for GNSS
Receiver with USB to UART

Component Connect to

NEO-7M \/CC USB to UART VCC
NEO-7M GND USB to UART GND
NEO-7M TX USB to UART RXD
NEO-7M RX USB to UART TXD

An example series of the National Marine Electronics Association
(NMEA) GNSS messages is

$GPRMC,162436.00,A,5595.0000,N,00317.0000,W,0.378,,221017,, ,A
$GpPvTG,,T,,M,0.378,N,0.701,K,A

$GPGGA,162436.00, 5595.0000,N, 00317.0000,W,1,04,2.55,97.0,M,49.8,M,,
$GPGSA,A,3,09,06,07,05,,,,,55,,6.66,2.55,6.16

$GPGSV, 3,1,11,02,50,268,27,03,00,114,,05,24,290,27,06,43,203,33
$GPGSV, 3,2,11,07,44,150,31,09,66,080,31,16,14,056,,23,34,071,14
$GPGSV,3,3,11,26,12,028,,29,16,326,18,30,20,176,11

$GPGLL, 5595.0000,,N, 00317.0000,W,162436.00,A,A

340



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

The example messages are prefixed with $GP followed by the message
name—such as RMC, GGA, and GLL—to provide information on time,
latitude, and longitude. The GSV message provides positional information
on each satellite or space vehicle (SV). Speed over ground, altitude, and
date are provided by the VTG, GGA, and RMC messages, respectively.

u-blox u-center

The u-blox u-center GNSS evaluation software provides real-time
displays of GNSS message information. It can be downloaded from
www.u-blox.com/en/product/u-center. The u-blox u-center GNSS
evaluation display version 18.10 is illustrated in Figure 19-2. The position
and signal strength of each satellite can be displayed along with speed
over ground; 3D location of longitude, latitude, and altitude; and date and
time. The u-blox u-center GNSS evaluation display identifies satellites
from the GPS, GNSS, SBAS, and QZSS systems by the letters G, R, S, and Q,
respectively. NMEA message names are prefixed by $GP for GPS, $GL for
GLONASS, and $GN for a combination of GS and GLONASS.

BOI®C ™
Buaty nblon T

Figure 19-2. u-blox u-center GNSS evaluation display

341


http://www.u-blox.com/en/product/u-center

CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

A 2D or 3D location requires at least three or four satellites with
position and motion data and a carrier to noise density ratio (C/NO0) of
34dB-Hz to obtain a fix in 30 to 40 seconds. If the C/NO ratio is between
25 and 34dB-Hz, then it can take up to five minutes to obtain a valid 3D
location.

To communicate between the u-blox u-center GNSS evaluation
display and the GNSS receiver, the USB to serial UART interface TXD
(transmit) must also be connected to u-blox NEO-7M module RX (receive)
(see Figure 19-3). Close the Arduino IDE serial monitor. In the u-blox
u-center GNSS evaluation display menu, select Receiver » Connection »
COMport and select View » Sky View to display satellite position.

fritzing

Figure 19-3. GNSS receiver, USB to UART for u-blox u-center

Information on the NMEA message content is available within the
u-blox u-center GNSS evaluation display. From the View menu, select
Messages View and click the required message.

Information from the GSS/QZSS or GLONASS satellite systems is
obtained through the View menu.

1. Select Messages View.
2. Select UBX.

3. Select CFG (Config).

342



4.

5.

CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

Select Enable for either GPS and QZSS or GLONASS.

Select Send at the bottom left of the u-blox u-center
GNSS evaluation display.

Instructions on the u-blox u-center GNSS evaluation software are
available on the u-blox website at www.u-blox.com/en/product/u-center.

Arduino and GNSS

NMEA messages from the GNSS module can be displayed on the u-blox
u-center GNSS evaluation display by selecting View » Text console. The

following is the order of messages.

RMC - recommended minimum data
VTG - course over ground

GGA - global positioning data

GSA - active satellites

GSV - satellites in view

GLL - latitude and longitude

Information on the NMEA 0183 message structure is available from
several sources, such as www.u-blox.com/en/product-resources.

An example RMC message is

$GPRMC, 083559.00, A, 4717.11437, N, 00833.91522, E, 0.004, 77.52, 091202, , , A*57

It has a comma-separated structure (see Table 19-2).

343


http://www.u-blox.com/en/product/u-center
http://www.u-blox.com/en/product-resources

CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

Table 19-2. RMC Message Structure

Example Description Name Format
$GPRMC RMC message ID xxRMC
083559.00 UTC time time hhmmss.ss
A Status (A:valid) status
4717.11437 Latitude (degrees and minutes)  lat ddmm.mmmmm
N North/South indicator NS
00833.91522  Longitude long ddmm.mmmmm
E East/West indicator EW
0.004 Speed over ground spd knots
77.52 Course over ground cog degrees
091202 Date date ddmmyy
blank mv
blank mvEW
A Mode indicator posMode
57 Checksum cs
<CR><LF> Carriage return and line feed

The GNSS module is connected to the Arduino using software serial

with GNSS module TX (transmit) and RX (receive) connected to Arduino

pins 8 and 9, respectively. The library AltSoftSerial by Paul Stoffregen

can be installed within the Arduino IDE using installation method 3, as

outlined in Chapter 3.
The u-blox NEO-7M module operates at 3.3V and the module RX
(receive) should not be connected to the Arduino TXD (transmit) pin,

which operates at 5V. A logic level converter ensures that the GNSS

344



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

module TX signal has sufficient voltage for the Arduino RXD pin as

well as protecting the GNSS module (see Figure 19-4 and Table 19-3).
Alternatively, a voltage divider, with a 4.7kQ and a 10kQ resistor, between
the Arduino TXD and GNSS module RX as outlined in Chapter 3, would
suffice.

LOUT| pJy EEXY

®3 -

fritzing

Figure 19-4. Logic level converter and GNSS module

345



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

Table 19-3. Logic Level Converter and GNSS Module

Component Connect to and to and to
NEO-7M VCC Arduino 3.3V

NEO-7M GND Arduino GND

NEO-7M TX LLC low voltage TX  LLC high voltage TX  Arduino pin 8
NEO-7M RX LLC low voltage RX  LLC high voltage RX  Arduino pin 9

LLC high voltage Arduino 5V
LLC low voltage Arduino 3.3V
LLC GND Arduino 5GND

In Listing 19-1, information from two NMEA messages, RMC and
GGA, is extracted, so the other NMEA messages are turned off by message
settings. Within the u-blox u-center GNSS evaluation display, the
UTX-CFG-MSG message settings are located by selecting the View menu
» Messages View » UBX » CFG (Config) » MSG (Messages). Choose the
required message from the drop-down menu, for example F0-04 NMEA
GxRMC, and deselect all options except UART1. At the bottom of the
screen, the message setting is displayed (see Figure 19-5).

346



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

OWw~ L0 ] A BDO-O-E-E-AR A0sEmasan
wemes XELA FiERE SIS s . & A |
=i T TR -

Memage  [FOOINMEAGRME =]

ot ron |

WRTT Fon i

WRT2 T on |

156 ron |

E “on |

'8 1

..[n; Z 0% T ot = +'.]x:::ro-—'|:

& | ¥ | ssend ER W

Figure 19-5. UTX - CGF - MSG message settings

For example, the message setting in HEX, but without the 0x prefix, for
the NMEA-RMC message is

B56206 01 0800 F0 040001 00000001 0545 that can be converted to
decimal, 181,98,6,1,8,0,240,4,0,1,0,0,0,1,5,69

to make the message setting more manageable in the sketch.

The default setting of the u-blox NEO-7M module receives GPS
satellite signals. The u-blox NEO-7M module can be set to receive GPS
or GLONASS satellite signals, using the UTX-CFG-GNSS (GNSS Config)
satellite settings in the same manner as the UTX-CFG-MSG message
settings.

The UTX-CFG-MSG message settings indicate the message type,
column eight in bold in Listing 19-1, and the message on/off state, column
ten in bold in Listing 19-1. In the sketch, all messages are initially switched
off and then the required messages are switched on, column 15 in bold in
Listing 19-1.

Given the structure of NMEA messages, specific variables can be
readily selected to record time, location, and speed, which can be
subsequently input to Google Maps for route marking. The sketch

347



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

extracts measurement time; location of latitude, longitude, and
altitude; speed from the RMC and GGA messages, with satellite
position; and signal strength extracted from the GSV messages. The
NMEA message labels and setting for GLONASS satellite data are
commented out in the sketch.

The switch case function allocates the information to be extracted
from each message, with the .toInt() and .toFloat() functions
converting message text into integers and real numbers, respectively.
The GSV message contains satellite data for up to four satellites, with
the first three variables being the number of GSV messages, the number
of the current GSV message, and the number of visible satellites. The
three temp[1...3] variables are used to format the Serial.print()
instructions. The replace() function is useful for replacing one character
in a string with another, as in the void parseMessage() function.

Listing 19-1. Reading GNSS Messages

#include <AltSoftSerial.h> //include AltSoftSerial library
AltSoftSerial AltSoft; // associate AltSoft with AltSoftSerial library
String NMEAdata, nmea, val[6], temp[19]; //define string to store data
int rec, lastRow;

String message[3]={"$GPRMC","$GPGGA","$GPGSV"}; // GPS message labels
//String message[3]={"$GLRMC","$GLGGA","$GLGSV"}; // GLONASS

// message labels
// matrix of UTX - CFG - MSG message settings

const unsigned char ublox[ ] PROGMEM = {
181,98,6,1,8,0,240,0,0,0,0,0,0,1,0,36, // GGA message off
181,98,6,1,8,0,240,1,0,0,0,0,0,1,1,43, // GLL message off
181,98,6,1,8,0,240,2,0,0,0,0,0,1,2,50, // GSA message off
181,98,6,1,8,0,240,3,0,0,0,0,0,1,3,57, // GSV message off
181,98,6,1,8,0,240,4,0,0,0,0,0,1,4,64, // RMC message off
181,98,6,1,8,0,240,5,0,0,0,0,0,1,5,71, // VTG message off

348



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

181,98,6,1,8,0,240,0,0,1,0,0,0,1,1,41, // GGA message set on
181,98,6,1,8,0,240,3,0,1,0,0,0,1,4,62, // GSV message set on
181,98,6,1,8,0,240,4,0,1,0,0,0,1,5,69, // RMC message set on
181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, // GPS and
0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,163,9, // GLONASS off
181,98,6,62,36,0,0,0,22,4,0,4,255,0,1,0,0,1,1,1,3, // GPSon
0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,164,37 // GPS on
//181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, // GLONASS on
//0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,1,0,0,1,164,13 // GLONASS on
b

void setup()

{
Serial.begin(9600); // baud rate for Serial Monitor
AltSoft.begin(9600); // serial connection to GNSS module
for(int i = 0; i < sizeof(ublox); i++)
{
AltSoft.write(pgm read byte(ublox+i)); //send message settings to GNSS
delay(5);
} // column headers
Serial.println("time, lat, long, altitude, speed, satellite data");
delay(1000);
}
void loop()
{

NMEAdata = AltSoft.readStringUntil('\n'); //read data until a carriage return
nmea = NMEAdata.substring(o, 6); //first6 characters are message name
if(nmea == message[0]) rec = 0; // message name equals $GLRMC

else if(nmea == message[1]) rec = 1; // or $GLGGA
else if(nmea == message[2])rec = 2; // or $GLGSV
switch (rec) // use switch ..case

349



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

{

350

case 0:
parseMessage(NMEAdata, 7);  // parse GPRMC message, 7 values
val[o]=temp[0].toInt(); // time
val[1]= temp[2].toFloat()/100.0; //latitude
val[2]= temp[4].toFloat()/100.0; //longitude
if(temp[5]="W") val[2]="-"+val[2];
val[4]= String(temp[6].toFloat()*1.852); //convertspeed in
// knots to kmph
break;
case 1:
parseMessage(NMEAdata, 9); //parse GPGGA message, 9 values
val[3]=temp[8]; // altitude (m)
val[5]=temp[6]; // number of satellites for fix
break;
case 2:

parseMessage(NMEAdata,19); //parse GLGSV message
if(temp[1]=="1")
{
val[6]=temp[2]; // number of visible satellites
for (int i=0; i<6; i++)
{Serial.print(val[i]);Serial.print(",");}
Serial.println();
for (int i=0;i<6;i++) val[i]="";
}
if(temp[1].toInt()<temp[0].toInt()) // not the lastline of data
{
for (int i=3;i<19;i++)
{Serial.print(temp[i]);Serial.print(",");}
Serial.println();
}

else // last line of data



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

{
lastRow = 4*(temp[2].toInt()-(temp[1].toInt()-1)*4)+3;
for (int i=3;i<lastRow;i++)
{Serial.print(temp[i]);Serial.print(",");}

Serial.println();
}
break;
default: break;

}
}

void parseMessage(String data, int nval) //function to parse message

{

data.replace('*', ','); // replace asterisk, *, with comma

int istart, iend;

iend = 0;

for (int i=0; i<nval; i++)

{
istart = data.indexOf(",", iend); //istartislocation before value
iend = data.indexOf(",", istart+1); //iend islocation after value
temp[i] = data.substring(istart+1, iend);

}
}

An alternative to extracting information directly from the NMEA
messages is to use a library, such as the NeoGPS library by Slash Devin,
which can be installed within the Arduino IDE using installation
method 3, as outlined in Chapter 3. Information about the NeoGPS
library and the structure of extracted data from the NMEA messages
is available at github.com/SlashDevin/NeoGPS. Version 4.2.9 of
the NeoGPS library uses AltSoftSerial as the default software serial
connection, so the u-blox NEO-7M module TX pin is connected to
Arduino pin 8.

351


http://github.com/SlashDevin/NeoGPS

CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

The NMEAorder sketch, which is included in the NeoGPS library,
checks the configuration of the LAST SENTENCE variable and displays the
result on the serial monitor. The definition of LAST SENTENCE is changed
by editing the NMEAGPS_cfg.h file located in the NeoGPS library. The
default is the Documents » Arduino » libraries folder, with the location
of the default library folder for the Arduino IDE confirmed by selecting
File » Preferences within the Arduino IDE.

1. Open the Arduino » libraries » NeoGPS »
NMEAGPS_cfg.hfile to change line 48 from

#define LAST_SENTENCE_IN INTERVAL NMEAGPS::NMEA RMC
to have the required value; for example,
#define LAST SENTENCE_IN INTERVAL NMEAGPS::NMEA GLL

2. Save the NMEAGPS_cfg.hfile and then re-run
the sketch NMEAorder to ensure that the change
is correctly incorporated and the serial monitor
should display

SUCCESS: LAST_SENTENCE_IN_INTERVAL is correctly set to
NMEAGPS::NMEA_GLL

3. Ifinformation on individual satellites is required, then edit
the NMEAGPS_cfg file, within the src folder of the NeoGPS
library, and uncomment the lines in Listing 19-2.

Listing 19-2. Individual Satellite Settings

#define NMEAGPS_PARSE_GGA // online 33
#define NMEAGPS PARSE GLL // online 34
#define NMEAGPS_PARSE_GSV // on line 36
#define NMEAGPS_PARSE_RMC // online 38
#define NMEAGPS PARSE SATELLITES // on line 209
#define NMEAGPS PARSE SATELLITE_INFO // online 210

352



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

Listing 19-3, which uses the NeoGPS library, provides the same satellite
information as Listing 19-1 without having to parse NMEA messages or
define UTX-CFG-MSG message settings.

Listing 19-3. Reading GNSS Messages Using the NeoGPS Library

#include <AltSoftSerial.h> // include AltSoftSerial library
AltSoftSerial AltSoft; // associate AltSoft with AltSoftSerial library

#include <NMEAGPS.h> // include NeoGPS library
NMEAGPS nmea; // associate nmea with NMEAGPS library
gps_fix gps; // associate gps with NMEAGPS library

int GPS, SBAS, Nsat, count;

void setup()

{
Serial.begin(9600); // define Serial output baud rate
AltSoft.begin(9600); // serial connection to GNSS module
Serial.println("time, lat, long, altitude, speed, satellite data");
delay(500); // column headers
}
void loop()
{
if (nmea.available(AltSoft)) // GNSS data available
{
gps = nmea.read(); // latest satellite message
if(gps.valid.time) // validated time - every second
{ // leading zeros for

if(gps.dateTime.hours < 10) Serial.print("0"); //time
Serial.print(gps.dateTime.hours); Serial.print(":");
if(gps.dateTime.minutes < 10) Serial.print("0");
Serial.print(gps.dateTime.minutes); Serial.print(":");
if(gps.dateTime.seconds < 10) Serial.print("0");
Serial.print(gps.dateTime.seconds); Serial.print(", ");

353



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

if(gps.valid.location) // validated location

{ // latitude and longitude
Serial.print(gps.latitude(), 3); Serial.print(", ");
Serial.print(gps.longitude(), 3); Serial.print(", ");

}

if(gps.valid.altitude) // altitude
{Serial.print(gps.altitude(), 1);Serial.print(", ");}

if(gps.valid.speed) // speed
{Serial.print(gps.speed kph(), 1);Serial.print(", ");}

if(gps.valid.satellites)

{

Serial.print(gps.satellites); //number of satellites for fix

Serial.print(",");

GPS = 0;
SBAS = 0;
Nsat = 0;
for (int i=0; i<16; i++) // maxnumber of visible satellites
{

if (nmea.satellites[i].tracked)

{

Nsat++; // number of tracked satellites

if (nmea.satellites[i].id <= 32) GPS++;
else if (nmea.satellites[i].id >32 &&
nmea.satellites[i].id <= 64) SBAS++;

}
}

Serial.print(Nsat);Serial.print(","); //display satellite numbers

non

Serial.print(GPS);Serial.print(",");
Serial.println(SBAS);

count = 0;

for (int i=0; i<16; i++)

354



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

// if (nmea.satellites[i].tracked) //display only tracked satellites
if (nmea.satellites[i].id>0) // display all visible satellites

{

Serial.print(nmea.satellites[i].id);Serial.print(",");
Serial.print(nmea.satellites[i].elevation);

Serial.print(",");
Serial.print(nmea.satellites[i].azimuth);Serial.print(",");

Serial.print(nmea.satellites[i].snr);Serial.print(",");

count++;

if(count%4==0) Serial.println();
}
if(count%4!=0) Serial.println();

}
}
}

If a sketch using the NeoGPS library (such as Listing 19-3) follows a
sketch defining the UTX-CFG-MSG message settings (such as Listing 19-1),
then message settings should be reset using Listing 19-4.

Listing 19-4. Reset GNSS Message Settings

#include <AltSoftSerial.h> // include AltSoftSerial library
AltSoftSerial AltSoft; //associate AltSoft with AltSoftSerial library

// matrix of UTX - CFG - MSG message settings
const unsigned char ublox[ ] PROGMEM = {
181,98,6,1,8,0,240,0,0,0,0,0,0,1,0,36, // GGA message off
181,98,6,1,8,0,240,1,0,0,0,0,0,1,1,43, // GLL message off
181,98,6,1,8,0,240,2,0,0,0,0,0,1,2,50, // GSA message off
181,98,6,1,8,0,240,3,0,0,0,0,0,1,3,57, // GSV message off
181,98,6,1,8,0,240,4,0,0,0,0,0,1,4,64, //RMC message off
181,98,6,1,8,0,240,5,0,0,0,0,0,1,5,71, // VTG message off

355



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

181,98,6,1,8,0,240,0,0,1,0,0,0,1,1,41, // GGA message on
181,98,6,1,8,0, 240,1,0,1,0,0,0,1,2,48, //GLL message on
181,98,6,1,8,0,240,2,0,1,0,0,0,1,3,55, // GSA message on
181,98,6,1,8,0,240,3,0,1,0,0,0,1,4,62, //GSV message on
181,98,6,1,8,0,240,4,0,1,0,0,0,1,5,69, //RMC message on
181,98,6,1,8,0,240,5,0,1,0,0,0,1,6,76, // VTG message on
181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, //GPSand
0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,163,9, // GLONASS off
181,98,6,62,36,0,0,0,22,4,0,4,255,0,1,0,0,1,1,1,3, //GPSon
0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,0,0,0,1,164,37, // GPSon
//181,98,6,62,36,0,0,0,22,4,0,4,255,0,0,0,0,1,1,1,3, // GLONASS on
//0,0,0,0,1,5,0,3,0,0,0,0,1,6,8,255,0,1,0,0,1,164,13 // GLONASS on

};
void setup()

{
Serial.begin(9600); // baud rate for Serial Monitor
AltSoft.begin(9600); // serial connection to GNSS module
for(int i = 0; i < sizeof(ublox); i++)
{
AltSoft.write(pgm read byte(ublox+i)); //send message settings to GNSS
delay(5);
}
Serial.println("NMEA messages all on");
}
void loop() // nothing in void loop function
{}

356



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

GNSS Data Logging to SD Card

Satellite data written to an SD card forms the basis of a mobile GNSS
tracker (see Figure 19-6 and Table 19-4). Listing 19-5 builds on Listing 19-3
by including data logging with an SD card, as described in Chapter 12 in
the “Logging Weather Station Data” and “Increment File Name for Data

Logging” sections.

-1
>

|
=
-
a
[ =
=
o :

fritzing

Figure 19-6. Logging GNSS data with an SD card

357



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

Table 19-4. Logging GNSS Data

with an SD Card

Component Connect to
NEO-7M VCC Arduino 5V
NEO-7M GND Arduino GND
NEO-7M TX Arduino pin 8
SD card GND Arduino GND
SD card VCC Arduino 5V

SD card MISO Arduino pin 12
SD card MOS/ Arduino pin 11
SD card SCK Arduino pin 13
SD card SCS Arduino pin 10

Listing 19-5. Logging GNSS Data with an SD Card

#include <AltSoftSerial.h>
AltSoftSerial AltSoft;
#include <NMEAGPS.h>
NMEAGPS nmea;

gps_fix gps;

#include <SPI.h>

#include <SD.h>

File file;

String filename = "data.csv";
int CSpin = 10;

int i = 0;

// include AltSoftSerial library

// associate AltSoft with AltSoftSerial library
// include NeoGPS library

// associate nmea with NMEAGPS library
// associate gps with NMEAGPS library
// include SPI library

// include SD library

// associate file with SD library

// filename

// chip select pin for SD card

// data record counter

String header, data, hr, mn, s;

358



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

void setup()

{
Serial.begin(9600); // define Serial output baud rate
if(SD.begin(CSpin) == 0) // check for presence of SD card
{
Serial.println("Card fail"); //returnif SD card notfound
return;
}

Serial.println("Card OK");
if(SD.exists(filename)) SD.remove(filename); // delete existing file
file = SD.open(filename, FILE_WRITE); // create new file

if(file == 1) // file opened
{ // column headers
header = "Time, Latitude, Longitude, Altitude, Speed, Satellites";
file.println(header); // write column headers to SD card
file.close(); // close file after writing to SD card
}
else Serial.println("Couldn't access file"); //file not opened
AltSoft.begin(9600); // serial connection to GNSS
}
void loop()
{
while (nmea.available(AltSoft)) // GNSS data available
{
i++; // increase data record counter

Serial.print("record ");Serial.println(i); // printrecord number
gps = nmea.read(); // latest satellite message

hr = String(gps.dateTime.hours); // leading zeros for time
if(gps.dateTime.hours<10) hr = "0"+hr;

mn = String(gps.dateTime.minutes);

359



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

if(gps.dateTime.minutes<10) mn="0"+mn;

s = String(gps.dateTime.seconds);
if(gps.dateTime.seconds<10) s="0"+s;

data = hr + mn+ s; // create string of readings
data =data+","+String(gps.latitude(),4)+","+
String(gps.longitude(),4);

data =data+","+String(gps.altitude(),1)+","+
String(gps.speed kph(), 1);

data = data + "," + String(gps.satellites);

file = SD.open(filename, FILE WRITE); //open file on SD card
file.println(data); // write data to SD card
file.close(); // close file on SD card

GNSS and ST7735 Screen

The mobile GNSS tracker is completed by including a
ST7735 TFT LCD (Thin Film Transistor Liquid Crystal
Display) screen to display current location and time, while

simultaneously writing GNSS data to an SD card (see Figure 19-7 and
Table 19-5). The ST7735 TFT LCD screen has an SD card module on the
rear of the screen. Listing 19-6 uses code for the SD card from Chapter 12,
for the ST7735 TFT LCD screen from Chapter 13, and for the GNSS
module from this chapter. The stand-alone microcontroller is built and
programmed as described in Chapter 18.

360



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

R7TXNAT

D EEEE R RN

( atmegaicé

] Bt - -
] 1 capacitors

. L . . 22uF

L L . .. loonF
resistor ¢ | 16MHz

& 10kQ  22pF capacitors -

LD33V voltage regulator 3.3V L4940V5 voltage regulator 5V

fritzing

Figure 19-7. Mobile GNSS with screen

The sketch uses the NeoGPS library to access positional data rather
than having to parse NMEA messages. The sketch first checks the status of
the SD card and opens a new dataN.csv file with the file name incremented
rather than overwriting the existing data file. The ST7735 TFT LCD screen
is cleared and headers for the speed, location, and number of satellites
are displayed on the screen. Every second, the ST7735 TFT LCD screen is
updated with speed, satellite number, and location of altitude, latitude,
and longitude, with satellite number and location only updated if there
are new values. Every five seconds, data on the time, latitude, longitude,
altitude, speed, and number of satellites is written to the SD card.

361



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

Values from GNSS messages are converted to strings and then to
characters for display on the ST7735 TFT LCD screen with the String()
and .toCharArray() functions. Prior to the valid NMEA messages being

obtained, values of 96, 97, 98, and 99 are written to the SD card for location

and satellite number.

Table 19-5. Mobile GNSS with Screen

Component Connect to and to

L4940V5 supply Battery 9V 0.1uF capacitor positive

L4940V5 GND GND rail 0.1pF capacitor negative
22uF capacitor negative

L4940V5 demand 5V rail 22uF capacitor positive

LD33V supply 5V rail

LD33V GND GND rail

ATMega328P-PU pin 1 10kQ resistor 5V rail

ATMega328P-PU pins 9, 10 16MHz clock crystal

ATMega328P-PU pins 9, 10 16MHz clock crystal

ATMega328P-PU pins 9, 10  22pF capacitor GND

ATMega328P-PU pin 7 5V rail

ATMega328P-PU pin 22 GND rail

NEO-7M V/CC 5V rail

NEO-7M GND GND ralil

NEO-7M TX ATMega328P-PU pin 14

ST7735 TFTVCC 5V rail

ST7735 TFT GND GND rail

ST7735 TFT CS ATMega328P-PU pin 12

362

(continued)



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

Table 19-5. (continued)

Component Connect to and to

ST7735 TFT RESET ATMega328P-PU pin 13

ST7735 TFT A0 ATMega328P-PU pin 15

ST7735 TFT SDA ATMega328P-PU pin 17 SD card module MOSI
ST7735 TFT SCK ATMega328P-PU pin 19 SD card module SCK
ST7735 TFT LED LD33V output 3.3V

SD card module CS ATMega328P-PU pin 16

SD card module MISO ATMega328P-PU pin 18

LD33V . ».  The schematic in Figure 19-7 starts with 9V

’ » ?  from the battery reduced to 5V by the L4940V5
e R T voltage regulator, which powers the NEO-7M

. module, the ATMega328P-PU microcontroller

and the SD card module. The 5V output from the 1L.4940V5 voltage
regulator is reduced to 3.3V by the LD33V voltage regulator to supply the
ST7735 TFT LCD screen. Note the voltage regulator pins are different with
supply, GND and demand for the 1L.4940V5 regulator and GND, demand
and supply for the LD33V regulator.

The ATMega328P-PU microcontroller is connected to the NEO-7M
module, ST7735 TET LCD screen, and SD card module. Downloading the
complied sketch with a USB to serial UART interface connected to the
microcontroller was outlined in Chapter 18, with the USB to serial UART
connections shown in Table 19-6.

363



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

Table 19-6. USB to Serial UART Interface

Component

Connect to

100nF capacitor positive
100nF capacitor negative
USB to serial UART RXD

USB to serial UART TXD
USB to serial UART VCC

USB to serial UART GND

USB to serial UART DTR
ATMega328P-PU pin 1
ATMega328P-PU pin 3
ATMega328P-PU pin 2
5V rail

GND rail

Listing 19-6. Mobile GNSS with Screen

#include <AltSoftSerial.h>

// include AltSoftSerial library

AltSoftSerial AltSoft;
#include <NMEAGPS.h>
NMEAGPS nmea;

gps_fix gps;

// associate AltSoft with AltSoftSerial library
// include NeoGPS library

// associate nmea with NMEAGPS library

// associate gps with NMEAGPS library

#include <SPI.h>

#include <SD.h>

String filename;

String basefile = "data";
bool filefound = false;

int filecount = 0;

int SDcount = 0;

int nsat = 0;

float oldlat = 0;

float oldlong = 0;

#include <Adafruit_ST7735.h>
#include <Adafruit GFX.h>
int TFT_CS = 6;

int RSTpin = 7;

int DCpin = 9;

364

// include SPI library
// include SD library

// default filename is data.csv
// checks if filename exists

// adds number to filename
// counter to write to SD card
// last number of satellites

// last latitude

// lastlongitude

// include the ST7735 library
// include the GFX library

// screen chip select pin

// screen reset pin

// screen DC pin



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

int SD _CS = 10; // SD card chip select pin

// associate tft with Adafruit_ST7735 library
Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);
String fill;
String data; // GNSS output converted to string
char text[6]; // string converted to characters

void setup()
{
tft.initR(INITR_BLACKTAB); // initialize ST7735 TFT LCD screen
tft.fillScreen(ST7735_BLACK); //clear screen
tft.setTextColor(ST7735 WHITE, ST7735 BLACK); //text colour with over-write
AltSoft.begin(9600); // serial connection to GNSS module
if(SD.begin(SD_CS) == 0) //check for presence of SD card
{
printScreen("Card fail", 10, 5, 2); // return if SD card not found
return;
}
printScreen("Card OK", 10, 5, 2);
delay(1000);
filename=basefile+".csv"; //option to delete and replace file
//if(SD.exists(filename)>0) SD.remove(filename);
while (filefound == 0) // search for file with filename

{

if(SD.exists(filename)) //iffilename already exists on SD card

{

filecount++; // then increment filename counter

filename = basefile + String(filecount) +

}

else filefound = true; //file with filename located on SD card

'.csv"; // new filename

} // column headers

365



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

data = "Time, Latitude, Longitude, Altitude, Speed, Satellites";
File file = SD.open(filename, FILE WRITE); //open file on SD card

if(file == 1) file.println(data); // write header to SD card
file.close();
tft.fillScreen(ST7735 BLACK); // clear screen

printScreen("Speed & satellites", 9, 5, 1); //printfixed text
printScreen("Altitude", 8, 50, 1);
printScreen("Latitude & longitude", 8, 95, 1);

}

void loop()

{
while (nmea.available(AltSoft)) // GNSS data available

{

gps = nmea.read();

if(gps.valid.time) data = String(gps.dateTime.hours) + ":" +
String(gps.dateTime.minutes)+ ":" +
String(gps.dateTime.seconds);

else data ="99:99:99";

if(gps.valid.location) data = data + "," +
String(gps.latitude(), 4) + "," +
String(gps.longitude(), 4);

else data = data +",,96"; // defaultvalues while waiting for position

if(gps.valid.altitude) data = data +","+
String(gps.altitude(), 1);

else data = data +",97";

if(gps.valid.speed) data = data +","+ String(gps.speed kph(), 4);

else data = data +",98";

if(gps.satellites>0) data = data +","+ String(gps.satellites);

else data = data +",99";

SDcount++;

if(SDcount>4) // write to SD card every 5 seconds

{

File file = SD.open(filename, FILE WRITE); //write to SD card

366



CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

if(file) file.println(data); //write data string to file on SD card

file.close(); // close file on SD card
SDcount = 0; // reset counter
}
if(gps.speed_kph()<10) // print speed (kmph)
{
fill = " "+ String(gps.speed_kph(), 1); //convert number to string
fill.toCharArray(text,6); // convert string to characters
}

else String(gps.speed kph(), 1).toCharArray(text,6);
printScreen(text, 10, 20, 3);
if(nsat != gps.satellites)
{
if(nsat<10) fill = " "+ String(gps.satellites);
else fill = String(gps.satellites); //printnumber of
// satellites to screen
fill.toCharArray(text,6);
printScreen(text, 100, 20, 2);
nsat = gps.satellites; // current number of satellites
}
if(gps.altitude()<100)fill = " "+ String(gps.altitude(), 1);
else fill = String(gps.altitude(), 1); //printaltitude to screen
fill.toCharArray(text,6);
printScreen(text, 10, 65, 3);
if(abs(oldlat-gps.latitude())>0.1 || abs(oldlat-gps.latitude())>0.1)
{ // update latitude and longitude
String(gps.latitude(), 1).toCharArray(text,6);
printScreen(text, 10, 110, 2); //printlatitude to screen
String(gps.longitude(), 1).toCharArray(text,6);
printScreen(text, 70, 110, 2); //printlongitude to screen

367



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

oldlat = gps.latitude(); // current latitude
oldlong = gps.longitude(); // current longitude

}
}
}

void printScreen(char *text, int x, int y, int textSize)

{ // function to print to screen
tft.setCursor(x, y);
tft.setTextSize(textSize);
tft.print(text);

}

Displaying GNSS Data

The route for which GNSS data was stored on the SD card can be displayed
using GPS Visualizer, developed by Adam Schneider. To display the GNSS
data, upload the GNSS data file on www.gpsvisualizer.comand select
Choose an output format. Select Google Maps, and then click Map it.
Within the map, at the top right, there is a drop-down box for map types.
Four of several map types are Google map, Google aerial, Google hybrid,
and Google terrain, which are a street map, a satellite view, a combination
of street map and satellite view, and a map similar to an Ordnance Survey
map, respectively. The chosen map can be downloaded as an HTML
document, retaining the map format option, by selecting the download
option located above the map.

Route elevations can also be displayed using GPS Visualizer.

1. Inthe menu at the top of the GPS Visualizer home
page, select Look up elevations.

2. Upload the GNSS data file and
3. Select Draw elevation profile.

4. The elevation profile can be saved as a.png file.

368


http://www.gpsvisualizer.com

CHAPTER 19 GLOBAL NAVIGATION SATELLITE SYSTEM

An example of a Google hybrid map and a route elevation using GPS
Visualizer is shown in Figure 19-8.

1wa8m

nzm
wom
sm
sam §
.

Tom

lﬂmi " l}
wn| YAV A A~
P P AL f

0m

20m ‘J‘\VJ
u2my
H

Sim

-
156,
200m

20.4744m

Figure 19-8. Route maps from GNSS data

Summary

The NEO-7M module accessed global navigation satellite system (GNSS)
messages to determine position and speed. GNSS information was
displayed using u-blox u-center software. Positional information was
accessed directly from the GNSS messages and by using the NeoGPS
library that parsed the NMEA message data. A battery-powered mobile
GNSS tracker was built with the current position and speed information
displayed on a TFT LCD screen and stored on an SD card. Positional data
for a route was displayed using Google Maps to show the route and its
elevation profile.

Components List
e Arduino Uno and breadboard
e u-blox GNSS module: NEO-7M
e TFTLCD screen: 1.8-inch ST7735

e Micro SD card module

369



CHAPTER 19  GLOBAL NAVIGATION SATELLITE SYSTEM

370

Microcontroller: ATmega328P-PU

USB to UART interface: FT232R FTDI

Clock crystal: 16MHz

Capacitor: 2x 22pF ceramic, 0.1pF and 22pF
Resistor: 10kQ

Logic level converter: 4 channel

Voltage regulator: LD33V and 1L4940V5

Battery: 9V



CHAPTER 20

Interrupts and Timed
Events

Interrupts allow the microcontroller to respond to an external signal,

such as the change in state of a device, while performing another task. An

interrupt pauses the sketch and implements the interrupt service routine

(ISR), then the sketch continues from the point that it was interrupted.
There are at least three approaches for scheduling an event to

occur after a certain period of time has elapsed. The simplest is the

delay() function, which pauses the sketch for the required number of

milliseconds. A second approach is to use the millis() function, which

returns the number of milliseconds that the sketch has been running.

A third approach is to use the microcontroller timers.

Interrupts

The two advantages of an interrupt are that the microcontroller does not
have to constantly check the state of a device, known as polling, and when
the change of state occurs, the ISR is immediately implemented.

A simple example of an interrupt is the sound on a mobile phone
indicating that an email has arrived. The ISR is to read the email. The
interrupt ensures that the email account does not have to be constantly
checked to determine if an email has arrived. As noted in Chapter 9 on the

© Neil Cameron 2019 371
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_20



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

rotary encoder, given several tasks or delays in the void loop() function,
the microcontroller can miss detecting changes in the state of a device.
Interrupts resolve the problem by being triggered from hardware, rather
than from software, such that when a change in the state of a device
occurs, the microcontroller responds accordingly.

The Arduino’s interrupt pins are 2 and 3, which are referenced as
interrupt0 and interruptl or INTO and INTI, respectively. An ISR should
not pass or return variables, should be short and should not include the
delay() instruction. Variables that are included both in the sketch and in
the ISR must be declared in the sketch as volatile. The variable is then
loaded from RAM, and not from the storage register.

An interrupt can be defined with the attachInterrupt(interrupt
number, ISR, state change) instruction. Although the attachInterr
upt(digitalPinToInterrupt(interrupt pin), ISR, state change)
instruction is more portable across Arduino devices.

For example, if the interrupt, called ISR, is activated by a state change
of a switch on Arduino pin 3, which corresponds to interrupt 1, then the
two instructions that can be used are

attachInterrupt(1, ISR, CHANGE)

and

attachInterrupt(digitalPinToInterrupt (3),ISR,CHANGE).

An example illustrates the advantage of using an interrupt. The
objective is to turn on or off an LED depending on a switch being pressed,
while displaying, every second on the serial monitor, the number of
milliseconds that the sketch has been running (see Figure 20-1 and
Table 20-1). The sketch (see Listing 20-1) does not use an interrupt, and
if the switch is pressed during the one-second delay after printing to
the serial monitor, then the microcontroller will not detect a change in
the switch state. The interval of one second between printing could be
implemented with the millis() function, as outlined later in the chapter,
which would also enable detection of changes in switch state.

372



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

LED resistor

to.-l-o--.vt-w ZZOQ
il o ¢ ¢ s s s 680 e SWitchresistOr

10kQ

capacitor
10pF

fritzing

Figure 20-1. Interrupt switch and LED

Table 20-1. Interrupt Switch and LED

Gomponent Connect to and to
Switch right Arduino 5V

Switch left Arduino pin 3

Switch left 10kQ resistor ~ Arduino GND
Capacitor positive  Switch right

Capacitor negative  Switch left

LED long leg Arduino pin 7

LED short leg 220Q resistor  Arduino GND

373



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Listing 20-1. Switch and LED

int LEDpin = 7; // LED pin
int switchPin = 3; // switch pin
int switchState = LOW; // initial switch state

void setup()

{
Serial.begin(9600); // define Serial output baud rate
pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{
Serial.println(millis()); //display time (ms) on Serial Monitor
delay(1000); // delay 1s

if(digitalRead(switchPin) != switchState) State(); //change of switch state
}

void State() // can't use switch as a function name

{

switchState = digitalRead(switchPin); //update switch state
if(switchState == HICH) digitalWrite(LEDpin, !digitalRead(LEDpin));
} // turn LED on or off

The problem of not detecting a change in the switch state during
the one-second delay is resolved by attaching an interrupt that detects a
change in the switch state (see Listing 20-2). At the start of the sketch, the
switchState variable is defined as volatile as it is used in both the main
sketch and the interrupt. In the void setup() function, the interrupt is
defined as

attachInterrupt(1, State, CHANGE)

374



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

In the void loop() function, the following instruction is deleted.
if(digitalRead(switchPin) != switchState) Switch()

Changes to Listing 20-1 are indicated in bold.

Listing 20-2. Interrupt Switch and LED

int LEDpin = 7; // LED pin
int switchPin = 3; // switch pin
volatile int switchState = LOW; // initial switch state

void setup()
{

Serial.begin(9600); // define Serial output baud rate

pinMode(LEDpin, OUTPUT);  //LED pin as output

attachInterrupt(1, State, CHANGE); // define the interrupt
}

void loop()

{
Serial.println(millis()); // display time (ms) on Serial Monitor
delay(1000); // delay 1s
F(digitalRead{switchPin) = switchState) State();

}

void State() // can't use switch as a function name

{

switchState = digitalRead(switchPin); //update switch state
if(switchState == HIGH) digitalWrite(LEDpin, !digitalRead(LEDpin));
} // turn LED on or off

When the switch is pressed, the interrupt is immediately triggered
by hardware, the sketch pauses, and the interrupt service routine (ISR) is
applied to turn on or off the LED. The sketch then returns to display, on the
serial monitor, the number of milliseconds that the sketch has been running.

375



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Types of Interrupt

An interrupt can be initiated by a state change on an interrupt pin from
LOW to HIGH or from HIGH to LOW (CHANGE option), from HIGH to
LOW (FALLING option), and from LOW to HIGH (RISING option). The
interrupt can also be triggered by setting the interrupt pin to LOW
(LOW option).

For example, in Listing 20-2, the switch is connected to Arduino pin 3
(see Figure 20-1), which is interruptl. The ISR is the State() function
and the interrupt is triggered with the CHANGE option on the switch state.
The interrupt is defined by the attachInterrupt(1, State, CHANGE)
instruction.

If the switch was connected to Arduino pin 2, interrupt0, and the
interrupt only triggered when the switch state changed from LOW to
HIGH, then the interrupt would be defined with the attachInterrupt(o,
State, RISING) instruction.

The outcome of an interrupt depends on both the trigger option—
CHANGE, FALLING, RISING or LOW—and on the state of the variable used
in the ISR, such as a switch state. If the ISR turns on or off an LED when
the switch state is HIGH, then the interrupt outcomes to the four trigger
options are shown in Table 20-2.

376



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Table 20-2. Interrupt Triggers and State Changes

Trigger  Press switch Release switch
state changes from LOW to HIGH state changes from HIGH to LOW
CHANGE interrupt active interrupt active
switch state = HIGH switch state = LOW
turn LED on or off no change to LED
FALLING  interrupt not active interrupt active
switch state = LOW
no change to LED no change to LED
RISING interrupt active interrupt not active
switch state = HIGH
turn LED on or off no change to LED
Low interrupt inactive while switch pressed interrupt active
if switch change occurs with digitalRead,
then switch state = HIGH switch state = LOW
turn LED on or off no change to LED
millis() function resumes millis() function stops
display to serial monitor resumes no display to serial monitor

In Table 20-2, the outcomes of the CHANGE and RISING options are the
same, while the FALLING option has no impact on the LED. With the LOW
option, the interrupt is constantly active when the switch is not pressed,
so themillis() function is halted and there is no output to the serial
monitor.

377



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Conversely, if the ISR turns on or off the LED when the switch state is
LOW, the ISR outcomes are shown in Table 20-3.

Table 20-3. Interrupt Triggers and State Changes (2)

Trigger  Press switch Release switch
state changes from LOW to HIGH state changes from HIGH to LOW
CHANGE interrupt active interrupt active
switch state = HIGH switch state = LOW
no change to LED turn LED on or off
FALLING interrupt not active interrupt active
switch state = LOW
no change to LED turn LED on or off
RISING  interrupt active interrupt not active
switch state = HIGH
no change to LED no change to LED
Low interrupt inactive while switch pressed interrupt active
if switch change does not occur with digitalRead,
then switch state = LOW switch state = LOW
turn LED on or off LED turns on and off repeatedly
millis() function resumes with a 50% duty cycle
display to serial monitor resumes millis() function stops

In Table 20-3, the CHANGE and FALLING options have the same outcome,
while the RISING option has no impact on the LED. When the interrupt
is triggered by the LOW option, the LED is repeatedly turned on and off,
equivalent to a 50% duty cycle, as well as halting both the mi11lis()
function and display to the serial monitor.

Interrupts can be stopped and restarted with the noInterrupts()
and interrupts() instructions, respectively. An example of stopping
and restarting an interrupt is when copying a volatile variable to another

378



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

variable for use in the void loop() function. If the interrupt is not
stopped, then value of the volatile variable may change while being copied
to the second variable.

Additional Interrupt Pins

The PinChangelnterrupt library by Nico Hood enables additional Arduino
pins to be used as interrupt pins, rather than only the two interrupt0 and
interruptl pins. The PinChangelnterrupt library can be installed within
the Arduino IDE, using installation method 3, as outlined in Chapter 3.
Two changes are required to a sketch to define an Arduino input pin as an
additional interrupt pin.

The attachInterrupt(o or 1, interrupt, trigger option)
interrupt instruction is replaced with either attachPCINT(digital
PinToPCINT(interPin), interrupt, trigger option) orattach
PinChangeInterrupt(PCINT interPin, interrupt, trigger option),
where interPin is the Arduino pin to be used as an interrupt pin.

PCINT _interPin is the corresponding pin change interrupt number for the
Arduino pin.

For example, if Arduino digital pin 6 is to be used as an interrupt pin in
Listing 20-2, rather than pin 3, then interPin is 6 and PCINT interPin is the
PCINT number of Arduino pin 6, which is 22 (PCINT22) (see Figure 18-1).
The interrupt instruction would be replaced by either attachPCINT(digital
PinToPCINT(6), State, CHANGE) orattachPinChangeInterrupt(22,
State, CHANGE).

The #include <PinChangeInterrupt.h> instruction mustalso be
included in the updated sketch.

379



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Interrupts and Rotary Encoder

Inclusion of an interrupt with a rotary encoder ensures that the
microcontroller detects all turns on the rotary encoder, even with a delay
included in the void loop() function (see Figure 20-2 and Listing 20-3).
A few changes are required to the rotary encoder sketch of Chapter 9
(see Listing 9-1). The SW (switch) and CLK (pin A) pins are connected

to interrupt0 and interruptl pins, which are Arduino pins 2 and 3. The
interrupt ISRs turnOff() and encoder (), which detect a falling edge on
the SW and CLK pins, as in Listing 9-1 are defined by:

attachInterrupt(0, turnOff, FALLING)
attachInterrupt(1, encoder, FALLING)

A three second delay is included in the void loop() function to
demonstrate that the two interrupts detect all changes in the rotary
encoder.

The turnOff() ISR sets the LED brightness to zero. The encoder () ISR
requires the state of the DT pin (pin B) to determine the direction of the
rotary encoder and as the interrupt is applied on a falling edge of the CLK
pin, there is no need to check the status of the CLK pin.

380



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

fritzing

Figure 20-2. Rotary encoder with LED and interrupt

Listing 20-3. Rotary Encoder with LED and Interrupt

int DTpin= 9; // pin B or data pin

int SWpin= 2; // switch pin

int LEDpin = 11; // LED on PWM pin
volatile int bright = 120; // initial LED value

int fade = 10; // amount to change LED
int rotate = 0; // number of rotary turns

volatile int SW = 0;
volatile int change;

381



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

void setup()

{
Serial.begin(9600); // define Serial output baud rate
pinMode(LEDpin, OUTPUT); // LED pin as output
pinMode(SWpin, INPUT PULLUP);  //switch pin uses internal pull-up resistor
attachInterrupt(1, encoder, FALLING); //detect change in rotary encoder
attachInterrupt(0o, turnOff, FALLING); // detect switch change

}

void loop()

{
rotate = rotate + abs(change); //number of turns of rotary encoder
bright = bright + change*fade; // change LED brightness
bright = constrain(bright, 0, 255); //constrain LED brightness
if(change != 0)
{

Serial.print(rotate);Serial.print("\t"); //display number of rotary
Serial.println(bright); // turns and LED brightness

}
analogWrite(LEDpin, bright); //update LED brightness

change = 0; // reset change

delay(3000); // delay to verify interrupt functioning
}
void encoder() // interrupt to detect rotations
{

int newB = digitalRead(DTpin); // state of (DT) pin B
change = change + (2*newB - 1); //number of changes and direction of rotation

}

void turnOff() // interrupt for switch

{
bright = 0;
analogWrite(LEDpin, bright);
}

382



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

As discussed in Chapter 2, when a switch is pressed, the springy nature
of the metal used in the contact points can cause the contact points to touch
several times; in other words, to bounce before making a permanent contact.
The Arduino clock speed of 16 MHz equates to 16 million operations per
second; so after pressing the switch, the bouncing switch contact appears to
the microcontroller as having opened and closed several times.

The hardware solution to switch bouncing is inclusion of a capacitor
across the switch and a resistor in series with the switch. The rotary
encoder CLK and DT pins are debounced by including 10k (R) pull-up
resistors with 10pF (C) capacitors connected between each of the CLK
and DT pins and GND (see Figure 20-2 and Table 20-4). The debounce
delay is 69ms, equal to RCxIn(2) seconds. Some rotary encoder modules
include 10kQ pull-up resistors on the CLK and DT pins, in which case
only the additional capacitors are required for debouncing the rotary
encoder CLK and DT pins.

Table 20-4. Rotary Encoder with LED and Interrupt

Component Connect to and to and to
Rotary encoder CLK Arduino pin 3 Capacitor positive

Rotary encoder CLK 10KkQ resistor Arduino 5V
Rotary encoder DT Arduino pin 9 Capacitor positive

Rotary encoder DT 10kQ resistor Arduino 5V

Rotary encoder SW Arduino pin 10
Rotary encoder VCC Arduino 5V
Rotary encoder GND Arduino GND

Capacitor negative Arduino GND
LED long leg Arduino pin 11
LED short leg 220€ resistor Arduino GND

383



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Timed Events: delay()

In Chapter 1, the delay(1000) function followed a digitalWrite()
instruction to turn on or off an LED, such that the LED was on or off for
one second. The disadvantage of the delay() function is that virtually all
microcontroller activity is stopped, such as checking the state of input
pins, changing the state of output pins or data processing. The delay()
function argument is an unsigned long, with a maximum delay of (2**- 1)
ms or 49.7 days.

Timed Events: millis()

As with the delay() function, the argument is an unsigned long, equal

to (2% - 1)ms or 49.7 days. When the required time has elapsed since the
scheduled event last occurred, the scheduled event is again implemented.
For example, in Listing 20-4, the built-in LED blinks every second, which is
when the difference between the elapsed time, millis(), and the time that
the LED state was last changed, LEDtime, is equal to 1000ms.

Listing 20-4. Timed Event with millis()

int LEDpin = 7; // LED pin
unsigned long LEDtime = 0; // event time

void setup()

{
pinMode(LEDpin, OUTPUT); // LED pin as OUTPUT

}

void loop()

{
if(millis()-LEDtime > 1000) // 1000ms since event time
{

digitalWrite(LEDpin, !digitalRead(LEDpin)); //turn LED on or off

384



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

LEDtime = millis(); // reset time that event last occurred

}
}

Two events can be scheduled with the millis() function, so that the
LED is off for two seconds and on for 100ms. The condition determines
if the required time has elapsed since the last event and implements the
changeLED() function to change the LED state. For example, in
Listing 20-5, the following instruction

if(timeNow >= (lastEvent + Atime) &3 digitalRead(LEDpin) == Aevent)
changeLED(Bevent)

turns the LED on, the Bevent, if 2000ms, the Atime, have elapsed since the
LED was off, the Aevent.

Listing 20-5. Timed Events with millis() and One LED

int Atime = 2000; // time for event A: LED off
int Aevent = LOW;
int Btime = 100; // time for event B: LED on

int Bevent = HIGH;

unsigned long lastEvent = 0; //time eventlastoccurred
unsigned long timeNow; // elapsed time in ms

int LED = 7; // LED pin

void setup()

{
pinMode(LED, OUTPUT); // LED pin as output
}
void loop()
{
timeNow = millis(); // turn LED on

if(timeNow >= (lastEvent + Atime) &3 digitalRead(LED) == Aevent)
changeLED(Bevent);

385



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

else // turn LED off
if(timeNow >= (lastEvent + Btime) &3 digitalRead(LED) == Bevent)
changeLED(Aevent);
}
void changeLED(int event) // function to turn LED on or off
{
digitalWrite(LED, event); //change LED state
lastEvent = timeNow; // reset time that event last occurred
}

Incorporation of a second LED (Cevent and Devent) with different
timings (Ctime and Dtime) into the sketch (see Listing 20-6) is straight
forward, with one LED briefly flashing on when the second LED turns on for
the third time. Note that in the example (Atime + Btime) = 3*(Ctime + Dtime),
so turning the second LED on (Devent) occurs three times for every time the
first LED is turned on (Bevent).

Listing 20-6. Timed Events with millis() and Two LEDs

int Atime = 2900; // time for event A: LED1 off
int Aevent = LOW;

int Btime = 100; // time for event B: LED1 on
int Bevent = HIGH;

int Ctime = 500; // time for event C: LED2 off
int Cevent = LOW;

int Dtime = 500; // time for event D: LED2 on

int Devent = HIGH;
unsigned long lastEvent[ ] = {0, 0}; //time eventlastoccurred

unsigned long timeNow; // elapsed time in ms
int LED1 = 7; // LED pins

int LED2 = 8;

int LD;

386



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

void setup()

{
pinMode(LED1, OUTPUT); // define LED pins as output
pinMode(LED2, OUTPUT);

}

void loop()

{
timeNow = millis(); // turn first LED on

if(timeNow >= (lastEvent[0] + Atime) && digitalRead(LED1) == Aevent)
changeLED(Bevent, LED1, 1);

else // turn first LED off

if(timeNow >= (lastEvent[0] + Btime) 8& digitalRead(LED1) == Bevent)
changeLED(Aevent, LED1, 1);

else // turn second LED on

if(timeNow >= (lastEvent[1] + Ctime) && digitalRead(LED2) == Cevent)
changeLED(Devent, LED2, 2);

else // turn second LED off

if(timeNow >= (lastEvent[1] + Dtime) 8& digitalRead(LED2) == Devent)
changeLED(Cevent, LED2, 2);

}

void changelLED(int event, int LED, int LD) //function to turn LED on or off

{
digitalWrite(LED, event); // change LED state

lastEvent[LD-1] = timeNow; //resettime that event last occurred

}

Timed Events: Timer1

The ATmega328P-PU microcontroller has two 8 bit timers, Timer0 and
Timer2, and a 16 bit timer, TimerI, as outlined in Chapter 18. Timer0 is used
by the delay(), millis() and micros() functions, so is not available for
triggering interrupts. TimerI counts to 65535 (= 2'¢ - 1), resets to zero and

387



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

starts counting again. TimerI takes 4.10 seconds, equal to (2 - 1)/(16 x 10°),
to count to 65535, given the 16 MHz clock speed. With the TimerOne library,
a timer period can be defined, such that an interrupt is triggered when
Timerl reaches the end of the timer period (see Table 20-5). The TimerOne
library by Paul Stoffregen can be installed within the Arduino IDE using
installation method 3, as outlined in Chapter 3.

Table 20-5. TimerOne Library Instructions

Instruction Explanation

Timeri.initialize(period) define the time period in
microseconds

Timer1.pwm(pin, duty) generates a PWM signal on Arduino
pins 9 or 10, with a duty value
between 0 and 1023 for a duty cycle
of 0% and 100% respectively.

The instruction analoghirite() on
Arduino pins 9 and 10 is disabled by
the TimerOne library.

Timeri.attachInterrupt(function) interrupt function triggered at the
end of the time period

For example, Listing 20-7 defines a cycle period of 0.05 seconds, when
the interrupt interLED is triggered to turn on or off an LED and the number
of times the LED is turned on is displayed on the serial monitor. A square
wave with frequency 20Hz, equal to the inverse of the cycle period, and a 50%
duty cycle is generated on Arduino pin 9. To ensure that the interrupt has not
incremented the number of counts, while the number of counts is being read
for displaying on the serial monitor, the interrupt is stopped, a copy of the
counter is made and then the interrupt is restarted. The number of counts is
divided by two, as turning on and off the LED is equal to one event.

388



CHAPTER 20

INTERRUPTS AND TIMED EVENTS

Listing 20-7. Timed Events with Timer1

#include <TimerOne.h>
int LEDpin = 11;
int PWMpin = 9;

int freq = 20;
unsigned long sec = pow(10,6);
unsigned long interval;
volatile int count = 0;

int countCopy, oldCount;

void setup()

{
Serial.begin(9600);
pinMode(LEDpin, OUTPUT);
interval = sec/(2*freq);
Timerl.initialize(interval);
Timer1.pwm(PWMpin, 0.5%1024);
Timerl.attachInterrupt(interLED);

}

void loop()

{
noInterrupts();
countCopy = count/2;
interrupts();

// include TimerOne library
// LED pin

// must be pin 9 or 10

// frequency of 20Hz

// setup one second

// increment counter defined as volatile

// define Serial output baud rate
// LED pin as output

// define time period

// initialize timer

// PWM duty cycle (50%)

// ISR as timer overflow interrupt

// stop the interrupt
// make copy of counter

// restart the interrupt

if(countCopy > oldCount) Serial.println(countCopy); //display count

oldCount = countCopy;
}

void interLED()
{

// update count

// interrupt function

digitalWrite(LEDpin, !digitalRead(LEDpin)); //change LED status

count = count + 1;

}

// increment counter

389



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Timer Register Manipulation

The timer registers of the ATmega328P-PU microcontroller can be
manipulated to generate square waves with frequencies up to 200kHz
and a variable duty cycle. Timer0 is used by the delay(), millis() and
micros() functions, so is not used for generating square waves. Timer2 is
an 8-bit timer, so only counts to 255 (28 - 1) before resetting to zero. Timerl
is a 16-bit timer, providing greater resolution than Timer2, and counts to
65535 (= 2!¢ - 1), overflows or resets to zero and starts counting again.

The time taken by TimerI to overflow, given the 16MHz clock speed

216
is Tox10° - 4.10ms. The count time can be increased by including a
X
re—scalarx2'®
prescalar, P o , with values between 1 and 1024. For example,

16x10°
a prescalar of 256 increases the time taken for Timer1 to overflow to
1049ms. Timerl can start counting from an initial value, TCNT1, to alter
the time, ¢, taken for Timer1I to overflow. With a prescalar, the value of
£x(16x10°)
pre—scalar
When TCNT1 = 3036 with a prescalar of 256, Timer]I takes exactly one
second to overflow and if an interrupt is triggered when Timerl overflows,

TCNT1 associated with a time ¢ for TimerI to overflow is 2'° —

then the interrupt would be triggered at one-second intervals.

To generate a square wave with frequency 50Hz requires TimerI to
overflow every 10ms, equal to the inverse of double the frequency as the
square wave has a high and low phase, which corresponds to TCNT1 values
of 45536, 63036 or 64911 with prescalars of 8, 64, or 256, respectively.

There are two TimerI registers, TCCR1A and TCCR1B, which contain
information on comparators, the prescalar and the waveform generation
mode (see Table 20-6).

390



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Table 20-6. Timerl Registers

Register Bit7 Bit5 Bit 4 Bit 3 Bit2 Bit1 Bit 0

TCCR1A  COM1A1  COM1B1 WGM11 WGM10
TCCR1B WGM13 WGM12 CS12 CS11 CS10

The value of the prescalar is set by CS12, CS11, and CS10, with the
waveform generation mode set by WGM13, WGM12, WGM11, and
WGM10, as shown in Table 20-7.

Table 20-7. Timerl Prescalars and Waveforms

Pre
scalar CS12 CS11 CS10 Waveform WGM13 WGM12 WGM11 WGM10

1 0 0 1 Normal 0 0 0 0
8 0 1 0 Clear timeron 0 1 0 0
compare

64 0 1 1
256 1 0 0 Fast PWM 8bit 0 1 0 1
1024 1 0 1 Fast PWM 1 1 1 1

Listing 20-8 illustrates using the TimerI registers to turn on or off
an LED at one-second intervals, with a prescalar of 256 and waveform

generation in normal mode.

391



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Listing 20-8. Timerl Registers
int LEDpin = 11; // LED pin

void setup()

{
Serial.begin(9600); // define Serial output baud rate
pinMode(LEDpin, OUTPUT); //LED pin as output
TCCR1A = 0; // initialise register TCCR1A
TCCR1B = 0; // initialise register TCCR1B
TCNT1 = 3036; // define TCNT1 in void setup() and ISR
TCCR1B |= (1<<CS12); // set pre-scalar to 256
TIMSK1 |= (1<<TOIE1); // enable Timerl overflow interrupt
}
ISR(TIMER1_OVF vect) // interrupt at Timer1 overflow
{
TCNT1 = 3036; // define TCNT1 in setup and ISR

if(millis()<9000) Serial.println(millis()); //printinterrupttimes (ms)
digitalWrite(LEDpin, !digitalRead(LEDpin)); //turn LED on or off
}

void loop() // nothing in void loop() function

(}

Registers TCCRIA and TCCRIB are set to zero and the bit
corresponding to CS12, register TCCR1B bit 2, is set to one as the prescalar
equals 256.

The TCCR1B |= (1<<CS12) instruction is a compound bitwise OR
operator, equivalent to TCCR1B = TCCR1B | (1<<CS12), which resultsin a
bit value of 0 when bit 2 of TCCRIB and CS12 are both 0 and a bit value of 1
otherwise. For example, the binary value of B0011 | B0O101 is BO111.

The TIMSKI register enables interrupts, such as the Timerl overflow
interrupt, TOIEI, and the compare match interrupts on Timerl: OCIEIA
and OCIEIB.

392



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

In clear timer on compare (CTC) mode, an interrupt, A, is triggered
when the Timerl counter reaches the value in the OCR1A register and then
resets to zero. Another interrupt, B, is triggered when the counter matches
the value in the OCRIB register (see Figure 20-3). The register value to
£x(16x10°)
pre—scalar
values of 62,500 and 12,500 will trigger interrupts at one second and 200ms

trigger an interrupt at time ¢ is , 80 OCRIA and OCRIB register

later, with a prescalar of 256.

Counter

LED value

Time
Figure 20-3. Compare interrupts and square wave

In Listing 20-9, an LED turns on at one-second intervals, interrupt A,
and turns off 200ms later, interrupt B, with the waveform generation set at
CTC mode. The LED value is HIGH when interrupt A is triggered and then
LOWwhen interrupt B is triggered.

393



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Listing 20-9. Timer1 Registers and Two Events

int LEDpin = 11; // LED pin
void setup() // interrupts at 1s and 0.2s later
{
Serial.begin(9600); // define Serial output baud rate
pinMode(LEDpin, OUTPUT);  //LED pin as output
TCCR1A = 0; // initialise register TCCR1A
TCCR1B = 0; // initialise register TCCR1B
OCR1A = 62500; // trigger interrupt A at 1s
OCR1B = 12500; // trigger interrupt B 200ms

TCCR1B |= (1<<CS12) | (2<<WCM12); // set pre-scalar 256 and CTC mode
TIMSK1 |= (1<<OCIE1A) | (1<<OCIE1B); //enable OCR1A and OCR1B

}

ISR(TIMER1 _COMPA vect) // interrupt at overflow A

{
if(millis()<9000) {Serial.print("A ");Serial.println(millis());}
digitalWrite(LEDpin, HIGH);
}

ISR(TIMER1_COMPB vect) // interrupt at overflow B

{
if(millis()<9000) {Serial.print("B ");Serial.println(millis());}
digitalWrite(LEDpin, LOW);
}

void loop() // nothing in void loop() function

(}

394



CHAPTER 20  INTERRUPTS AND TIMED EVENTS

Summary

Interrupts allow the microcontroller to immediately stop performing

one task, and then perform a second task and return to the first task. An
interrupt was illustrated by detecting all turns on a rotary encoder with

a delay included in the sketch. Timed events were scheduled with the
delay function, the elapsed time between events and by manipulating the
microcontroller timer register.

Components List

e Arduino Uno and breadboard
e Rotary encoder

e LED

o Switch: tactile

o Capacitor: 2x 10pF

e Resistor: 220Q and 10kQ

395



CHAPTER 21

Power Saving

The power demands on the Arduino are the ATmega328P microcontroller,
the ATmegal6U2 microcontroller controlling the USB-to-serial interface,
the 3.3V and 5V voltage regulators, and the three LEDs: power-on, transmit
(TX), and receive (RX). There are several power-down options, but they
only apply to the ATmega328P microcontroller.

The ATmega328P microcontroller has several functions that require
power, including the three timers: Timer0, Timerl, and Timer2, and the
three communication systems: Serial Peripheral Interface (SPI), Inter-
Integrated Circuit (I2C), and serial communication (USART). The analog-
to digital-converter (ADC) converts analog voltages to digital values. The
brownout detector (BOD) monitors the microcontroller voltage supply
and powers down the microcontroller when the voltage is too low. The
watchdog timer (WDT) checks microcontroller activity and resets the
microcontroller if there is a malfunction. The ADC and the two monitor
functions: BOD and WDT also require power. If the microcontroller
is to be battery powered, then some power can be saved by reducing
microcontroller functionality, until the microcontroller is triggered by an
interrupt to perform a specific task.

Of the six power-saving options for the microcontroller, the Idle option
saves the least power, but retains most microcontroller functionality,
while the Power Down option saves the most power, but retains the least
functionality (see Table 21-1). All power-saving options maintain interrupt
functionality and the watchdog timer. The difference between the Standby

© Neil Cameron 2019 397
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_21



CHAPTER 21  POWER SAVING

and Power Down options is in maintaining the oscillator, while retention of
Timer2 is the difference between the Power Save and Power Down options
and between the Extended Standby and Standby options.

Table 21-1 illustrates differences in current requirements of the
Arduino and of the ATmega328P microcontroller for the six power-saving
options.

The current to a “non-power-saving” Arduino with the built-in LED
turned off is 32.7mA, with a supply voltage of 5.18V from a laptop USB port
and a sketch consisting of

void setup() {}
void loop() {}

With the power-saving Power Down option, the current requirement
of the Arduino of 23.8mA indicates 27% power savings. The corresponding
current requirements of the ATmega328P microcontroller were 18.2mA
and 0.38mA, indicating a power saving of 98%.

Table 21-1. Power-Saving Options

Retained Functionality Current (mA)

12C SPI USART ADGC Oscillator Timers Arduino ATmega

Power Down 23.8 0.38
Power Save Timer2 24.7 1.6
Standby On 241 0.87
Extended On Timer2 24.7 1.6
Standby

ADC noise On On Timer2 25.2 9.6
reauce

ldle On On On On On Al 32.1 18.2

398



CHAPTER 21 POWER SAVING

The current requirements of the ATmega328P microcontroller with
the six power-saving options can be determined with a stand-alone
microcontroller (see Figure 21-1), as outlined in Chapter 18. The sketch
(see Listing 21-1) sets the sleep mode and when the switch is pressed
an interrupt is triggered for the microcontroller to leave sleep mode,
as indicated by the LED flashing. Interrupt0 on microcontroller pin 4 is
connected to the switch (see Table 21-2). After the sketch is downloaded to
the microcontroller, the USB to serial UART interface is disconnected.

LED resistor  capacitor
220Q 10pF

USB to serial UART

capacitor resistor16MHz clock crystal  resistor
100nF 10kQ 22pF capacitors 10kQ

Ammeter

fritzing

Figure 21-1. ATMega328 current requirement with power-saving
options

Table 21-2. ATMega328 Current Requirement with Power-Saving

Options

Component Connect to and to
ATMega328P-PU pin 1 10kQ resistor 5V rail
ATMega328P-PU pin 7 5V ralil

ATMega328P-PU pins 9, 10 16MHz clock crystal

(continued)

399



CHAPTER 21  POWER SAVING

Table 21-2. (continued)

Component Connect to and to
ATMega328P-PU pins 9, 10  22pF capacitor GND rail
ATMega328P-PU pins 20, 21 5V rail

ATMega328P-PU pin 22 GND rail

0.1uF capacitor positive
0.1uF capacitor negative
USB to serial UART RXD
USB to serial UART TXD
USB to serial UART VCC
USB to serial UART GND
LED long leg

LED short leg

Switch left

Switch left

Switch right

10uF capacitor negative

10uF capacitor positive

USB to serial UART DTR
ATMega328P-PU pin 1
ATMega328P-PU pin 3
ATMega328P-PU pin 2
ATMega328P-PU pin 7
ATMega328P-PU pin 22
220¢2 resistor

GND

10kQ resistor
ATMega328P-PU pin 4
SV rail

Switch left

ATMega328P-PU pin 17

GND rail

switch right

An interrupt can be initiated with a RISING or a FALLING trigger.
From the perspective of an interrupt named wake, a RISING trigger for

the interrupt with a default LOW switch state seems more intuitive than
a FALLING trigger with a default HIGH switch state. Schematics for both

options are displayed in Figure 21-2. Initiating the interrupt with a RISING

trigger requires a pull-down resistor connected to the switch for a LOW

default switch state.

400



CHAPTER 21 POWER SAVING

In contrast, a HIGH default switch state requires a pull-up resistor
connected to the switch, if the interrupt is initiated with a FALLING
trigger. The difference between the schematics in Figure 21-2 is
connection of VCC and GND around the resistor-switch combination,
noting that the orientation of the capacitor is also changed (see
Table 21-3), with the different connections for the RISING and
FALLING triggers highlighted in bold.

LED resistor

........... T ssevavevesen ejinge 2200

SOMpLiLIiITATIN  SEWESseenieatURt oo s
10kQ

i . " e
e e e A "
L LI “ e
" e . “ e e TR

=« « « capacitor
.- L 10”

FALLING interrupt signal RISING interrupt signal
fritzing

Figure 21-2. Arduino current requirement with power-saving option

401



CHAPTER 21  POWER SAVING

Table 21-3. Arduino Saving Current Requirement with Power Option

Component Rising trigger pull-down Falling trigger pull-up
resistor resistor
Connect to and to Connect to and to

Switch left 10kQ resistor Arduino GND  10kQ resistor ~ Arduino 5V

Switch left Arduino pin 2 Arduino pin 2
Switch right ~ Arduino 5V Arduino GND
Capacitor Switch left Switch right
negative

Capacitor Switch right Switch left
positive

LED long leg  Arduino pin 11 Arduino pin 11

LED shortleg 220 resistor Arduino GND  220Q resistor  Arduino GND

The power management and sleep mode are controlled by bit
manipulation of different registers to obtain specific power-saving
conditions. Further details are available at waw.gammon.com.au/power.
This chapter discusses use of the avr/sleep module and LowPower library
to utilize different sleep modes for power management.

avr/sleep Module

AVR is a class of microcontrollers developed by Atmel, which includes the
ATmega328P microcontroller of the Arduino. The AVR language is used to
program Atmel microcontrollers and the AVR library includes the avr/sleep
module for power management and sleep modes.

402


http://www.gammon.com.au/power

CHAPTER 21  POWER SAVING

The avr/sleep module is enabled to put the microcontroller into sleep
mode. The avr/sleep module can be deactivated (i.e., the microcontroller is
woken up) with an external interrupt on pins INTO or INT1, as outlined in
Chapter 20. The interrupt must be defined before the avr/sleep module is
implemented; otherwise, the microcontroller will always be in sleep mode.
A sketch (see Listing 21-1) incorporating the avr/sleep module includes
two functions. The sleep() function attaches the interrupt, sets the sleep
mode, puts the microcontroller in sleep mode and detaches the interrupt.
The wake () function contains instructions for the microcontroller when
leaving sleep mode, but before re-entering the void loop() function.

Listing 21-1. Sleep Mode with avr/sleep Module

#include <avr/sleep.h> // include avr/sleep module
int LEDpin = 11;
int wakePin = 2; // pin connected to interrupt 0

void setup()

{
pinMode (LEDpin, OUTPUT); // LED pin as OUTPUT
pinMode(LED BUILTIN, OUTPUT); //turn offbuilt-in LED
}
void loop()
{
delay(500);
digitalWrite(LEDpin, LOW); // turn LED off after sleep mode
sleep(); // function to set sleep mode
}
void sleep()
{
attachInterrupt(o, wake, RISING); // interrupt wake function
set_sleep mode(SLEEP_MODE PWR DOWN); // define sleep mode
//sleep_enable(); // set sleep enable bit

403



CHAPTER 21  POWER SAVING

//sleep_cpu(); // initiate sleep
sleep mode(); // set sleep enable bit, initiate sleep and reset
// sketch resumes here on interrupt trigger
//sleep_disable(); // reset sleep enable bit
detachInterrupt(0); // effectively debounces switch interrupt

}

void wake() // wake interrupt function
{

digitalWrite(LEDpin, HICH); //turnLED on
}

The sleep _mode() instruction effectively consists of the three
instructions: sleep _enable(), sleep cpu(), and sleep disable().
The three separate instructions, are included in Listing 21-1, in bold but
commented out, to illustrate the implicit order of the instructions. The
sleep enable() instruction sets the sleep enable bit in the Sleep Mode
Control Register, sleep_cpu() puts the microcontroller into sleep mode,
and sleep disable() resets the sleep enable bit. The interrupt is attached
before and detached after the microcontroller is put into sleep mode.

The following are the six sleep mode options.

SLEEP_MODE_PWR_DOWN
SLEEP_MODE_PWR_SAVE
SLEEP_MODE_STANDBY
SLEEP_MODE_EXT_STANDBY
SLEEP_MODE_ADC

SLEEP_MODE_IDLE

404



CHAPTER 21 POWER SAVING

LowPower Library

The Low-Power library by Rocket Scream Electronics provides options
for managing power to the microcontroller and the library can be
installed within the Arduino IDE using installation method 3, as outlined
in Chapter 3. Interrupts are used by the LowPower library to wake the
microcontroller, just as with the avr/sleep module.

The LowPower library instruction is

LowPower . powerDown (SLEEP_FOREVER, ADC_OFF, BOD OFF)
It essentially combines the two instructions of the avr/sleep module.

set_sleep mode(SLEEP_MODE_PWR_DOWN)
sleep mode()

The LowPower library also enables timed interrupts 0f 0.5, 1, 2, 4, and 8
seconds with the following instruction.

LowPower.powerDown (sleeptime, ADC_OFF, BOD OFF)

sleeptime takes these values: SLEEP_500MS, SLEEP_1S, SLEEP_2S,
SLEEP_4S, or SLEEP_S8S.

If alonger sleep period than 8 seconds is required, then the
LowPower . powerDown () instruction can be repeated with a for ()
instruction. For example, Listing 21-2 demonstrates using the void
sleep() function to achieve a sleep period of one minute.

Listing 21-2. Sleep Mode with LowPower Library

void sleep()

{ /] 7x8s =568
for (int i = 0; i<7; i++) LowPower.powerDown(SLEEP_8S,
ADC_OFF, BOD OFF);

LowPower . powerDown (SLEEP_4S, ADC OFF, BOD OFF); //plus4s=60s
wake();

}
405



CHAPTER 21  POWER SAVING

During the sleep period, the required current to the ATmega328P is
7pA (see Table 21-4), achieved with the LowPower . powerDown (SLEEP_8S,
ADC_OFF, BOD_OFF) instruction, which is significantly lower than the
current of 385pA when the avr/sleep Power Down module is implemented
(see Table 21-1). The LowPower library has the facility to separately turn
off the BOD and the ADC.

Table 21-4. Current for BOD and ADC

Combinations

Current (uA) Brownout Detector (BOD)
Analog-to-digital On Off
converter (ADC)

On 385 360
off 49 7

The avr/sleep Power Down module is equivalent to the LowPower.
powerDown (SLEEP_8S, ADC_ON, BOD ON) instruction.

Further power savings can be obtained with the LowPower.
powerDown (SLEEP_FOREVER, ADC_OFF, BOD_OFF) instruction, which
reduces the current requirement to just 5pA.

Power Down and an Infrared Sensor

A practical example of combining interrupts (see Chapter 20) with
power saving is using a passive infrared (PIR) sensor to turn on a light
when movement is detected, as in a battery-powered security light
(see Figure 21-3 and Table 21-5). Listing 21-3 uses an interrupt, which
is triggered with a RISING signal from the PIR sensor, to wake the
microcontroller from sleep mode and turn on an LED for 30 seconds.

406



CHAPTER 21 POWER SAVING

The stand-alone ATmega328P microcontroller was outlined in Chapter 18
and the PIR sensor in Chapter 3.

resistor

"IU'] AAA Battery | '
=
1 i Ada P
- eg vvwv v
22pF capacitors |ﬂ|___| AAA Battery

- i ) 'l
IIH FWELLT =T YA h

fritzing

Figure 21-3. Power saving with PIR sensor interrupt

When movement is detected, the default LOW PIR signal changes
to HIGH and triggers the interrupt. As the PIR signal is RISING, the
microcontroller leaves sleep mode and the LED is turned on. An interrupt
service routine (ISR) should not include the delay() function, as noted
in Chapter 20, so a movement flag, detect, maintains the LED being on for
the required time of 30 seconds within the void loop() function. After 30
seconds, the LED is flashed on and off to indicate that the microcontroller
is again set to sleep mode. In sleep mode, the required current of only
75pA implies that the battery-operated security light can operate for a
substantial time on a battery.

407



CHAPTER 21

POWER SAVING

Table 21-5. Power Saving with PIR Sensor Interrupt

Component Connect to and to
ATMega328P-PU pin 7 Battery 5V

ATmega328P pins 9, 10 16MHz clock crystal

ATmega328P pins 8, 9 22pF capacitor

ATmega328P pins 8, 10 22pF capacitor

ATMega328P-PU pin 8 Battery GND

PIR sensor VCC ATmega328P-PU pin 7

PIR sensor OUT ATmega328P-PU pin 4

PIR sensor GND ATmega328P-PU pin 22

LED long leg 220Q resistor ATmega328P-PU pin 17
LED short leg Battery GND

Note than ATmega328P pins 4 and 17 correspond to Arduino pins 2

(interrupt0) and 11 (LED), respectively.

Listing 21-3. Power saving with PIR Sensor Interrupt

#include <LowPower.h>

int LEDpin = 11;
int PIRpin = 2;
int detect = 0;

void setup()
{

pinMode(LEDpin, OUTPUT);

}

408

// include LowPower library
// LED pin
// interrupt on pin 2 (INTO)

// movement flag

// LED pin as output



CHAPTER 21 POWER SAVING

void loop()

{

if(detect == 1) // if movement detected

{
delay(30000); // delay 30s as LED is ON
digitalWrite(LEDpin, LOW); //turnLED off
delay(1000); // delay 1s

}

detect = 0; // reset movement flag

digitalWrite(LEDpin, LOW); // turn LED off
for (int i = 0; i<4; i++)

{ // four steps for turning LED
digitalWrite(LEDpin, !digitalRead(LEDpin)); //on and off, twice
delay(1000);

}

sleep(); // call sleep function

}
void sleep() // sleep function
{

attachInterrupt(o, wake, RISING); //interrupt pin, wake function and mode
LowPower . powerDown (SLEEP_FOREVER, ADC_OFF, BOD OFF); //power down

detachInterrupt(0); // detach interrupt
}
void wake() // wake interrupt function
{
digitalWrite(LEDpin, HICH); // turn LED on
detect = 1; // set movement flag
}

409



CHAPTER 21  POWER SAVING

Summary

Power-saving options with the avr/sleep module and the LowPower library
are described with an interrupt used to wake the microcontroller from
sleep mode. Current requirement of a stand-alone microcontroller in sleep
mode can be reduced to just 5pA compared to 18mA in non-sleep mode.

A battery-powered PIR sensor activating an interrupt to turn on an LED
replicated a security light system, with the microcontroller normally in
sleep mode to save power.

Components List

e Arduino Uno and breadboard

¢ Ammeter

e Microcontroller: ATmega328P-PU

e USB to UART interface: FT232R FTDI

e Clock crystal: 16MHz

o Capacitor: 2x 22pF ceramic, 0.1pF, and 10pF
e Resistor: 220Q2 and 10k<2

e Switch: tactile

e LED

e Passive infrared sensor: HR-SC501

410



CHAPTER 22

Sound and Square
Waves

Sound is the vibration of air particles. If the vibration is continuous and
regular, then the sound can be described by its frequency, as the number of
waves per second, quantified in Hertz (Hz). For the time interval in Figure 22-1,
the blue sound wave has two complete cycles, while the red sound wave has
four complete cycles, so double the frequency and half the wavelength of the
blue sound wave. For electromagnetic and sound waves, wavelength is the
speed of light and sound, respectively, divided by the frequency.

Figure 22-1. Two different frequencies

The human ear can hear sounds with frequencies of 20Hz to 20kHz
and ultrasound has frequencies above 20kHz. FM radio stations broadcast
with frequencies of 100MHz and wireless networks operate at 2.4GHz.

© Neil Cameron 2019 411
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_22



CHAPTER 22  SOUND AND SQUARE WAVES

The musical note A above middle C (see Figure 22-2) has a frequency
of 440Hz and is the tuning standard for musical pitch, which is the
perception that a note is higher or lower than another note. The frequency
of a note above or below A above middle C is 440 x 2"/'2, where n is the
number of notes above or below the note A above middle C. For example,
D4 is seven notes below A above middle C, and it has a frequency of 294Hz.

<)

o

[
Figure 22-2. Note A above middle C

The number of cycles of a sound is the sound duration multiplied by
the frequency. For example, a sound with a frequency of 440Hz that lasts
50ms consists of 22 cycles. A Piezo transducer can approximate a regular,
continuous sound wave by a square wave, with the transducer switched
to HIGH, then to LOW repeatedly (see Figure 22-3). The Piezo transducer
is HIGH or LOW for 1/(2xfrequency) seconds. A sound wave with
frequency 440Hz can be approximated by a square wave that is HIGH or
LOW for 1136ps.

Figure 22-3. Square wave approximation

412



CHAPTER 22  SOUND AND SQUARE WAVES

The Piezo transducer (see Figure 22-4) produces a repeating sound
every second in Listing 22-1; it has a frequency of 440Hz and the sound
lasts 50ms.

Pin 6: 976Hz
Pin 9: 490Hz

fritzing
Figure 22-4. Piezo transducer
Listing 22-1. Piezo Transducer
int piezoPin = 6; // define PWM pin for piezo transducer
float freq = 440; // sound frequency (Hz)
int duration = 50; // duration of sound (ms)
int interval = 1000; // sound duration plus pause (ms)

int pause;
int cycles = (duration*freq)/pow(10,3); //number of cycles of sound duration

413



CHAPTER 22  SOUND AND SQUARE WAVES
int timeHigh = pow(10,6)/(2.0*freq); //time (ps)thatsquare wave is HIGH

void setup()

{
pinMode(piezoPin, OUTPUT); // define piezo pin as output
pause = interval-duration; // pause between sounds
}
void loop()
{
for (int i=0; i<cycles+1; i++) // number of cycles per sound
{ // square wave HIGH or LOW
digitalWrite(piezoPin, !digitalRead(piezoPin));
delayMicroseconds (timeHigh);
}
delay(pause);
}

Rather than having to calculate the number of cycles and the time
that the square wave is HIGH or LOW, the tone(piezoPin, frequency)
instruction generates sound of the required frequency. The tone()
function is followed by a delay() equal to the sound duration, then the
noTone(piezoPin) instruction is followed by a delay(), equal to the
interval between sounds. The tone(piezoPin, frequency) function
defines piezoPin as an OUTPUT pin, so the pinMode(piezoPin, OUTPUT)
instruction is not required.

There are two alternatives for using the tone() function. The first is

tone(piezoPin, frequency); // sound frequency
delay(duration); // sound duration
noTone(piezoPin);

delay(pause); // pause between sounds

414



CHAPTER 22  SOUND AND SQUARE WAVES

The second alternative is the tone(piezoPin, frequency, duration)
instruction and the delay() is the sound duration plus the pause
between sounds, as the timers for the tone() and delay() functions run
simultaneously.

tone(piezoPin, frequency, duration); //sound frequency and duration
delay(duration + pause); //time(ms) between start of sound repeats

The tone(piezoPin, frequency, duration) instruction can be used
in the 4-digit 7-segment display timer sketch (see Listing 6-1) in Chapter 6
to produce a “clock ticking” effect with tone(piezoPin, 1000, 50) with
the delay(1000) instruction in the void loop() function.

Another method of generating sound uses the analogWrite()
instruction with Pulse Width Modulation (PWM) and a 50% duty cycle to
replicate the square wave (see Listing 22-2). PWM operates on a frequency
0f490.1961Hz on Arduino PWM pins 3,9, 10 and 11 and a frequency of
976.5625Hz on Arduino PWM pins 5 and 6. The frequency values of 490Hz
and 977Hz are equal to the microcontroller clock speed of 16MHz divided
by the default scalar of 64 and a cycle length of 256 or 510 for Timer0
or Timer1 and Timer?2, respectively. The tone() library uses Timer2 on
Arduino PWM pins 3 and 11, so those pins are not available for PWM when
using the tone() library.

Listing 22-2. Piezo Transducer with PWM

for (int rep=0; rep<reps; rep++) //number of cycles

{
analoghirite(piezoPin, 128); // analogWrite with 50% duty cycle
delay(duration); // duration of sound
analoghirite(piezoPin, 0); // no sound
delay(pause); // pause between sounds

}

415



CHAPTER 22  SOUND AND SQUARE WAVES

The three methods—counting cycles, the tone() function, and
analoghrite() on PWM pins—of generating sound give the same result
for frequencies of 490Hz or 977Hz, with the appropriate Arduino PWM pin,
but for other frequencies only the first two methods are applicable.

Piezo Transducer and Buzzer

A Piezo (passive) transducer (image on
left) requires a square wave to generate

&%

sounds of different frequencies, while a

Piezo (active) buzzer (image on right)
contains an internal oscillator with a single preset frequency. The Piezo
transducer and buzzer look similar, but the buzzer is higher than the
transducer, due to the internal oscillator, and has substantially greater
resistance across the two pins than the transducer, 3MQ compared to 15Q.
Applying power to the transducer or the buzzer produces a click or a sound,
respectively. The volume of the Piezo transducer or buzzer can be reduced
by connecting a 100€2 or a 220Q resistor in series. Note the @ symbol on the
top of the Piezo buzzer and transducer indicating the positive pin.

Musical Notes

A series of musical notes can be “played” using an Piezo transducer

with the tone() function. Information on a range of musical notes and
the corresponding frequencies can be loaded into a separate tab in

the Arduino IDE, rather than being included in the main sketch. In the
Arduino IDE, a new tab is created by selecting the triangle below the serial
monitor button in the right-hand side of the Arduino IDE and choosing
New Tab from the drop-down menu. The new tab should be titled notes.h
and frequencies are edited into the tab (see Listing 22-3). For example,
the frequency of 262Hz for middle Cis int NOTE_C4 = 262. The tone
definition can also be written as #define NOTE _C4 262, which is the

416



CHAPTER 22  SOUND AND SQUARE WAVES

format used in the sketch at www.arduino.cc/en/Tutorial/ToneMelody,
where details of musical notes and frequencies are available.

Listing 22-3. A Selection of Notes

int NOTE_C4 = 262;
int NOTE_D4 =294;
int NOTE_E4 = 330;
int NOTE_F4 = 349;
int NOTE_G4 = 392;
int NOTE_A4 = 440;
int NOTE_B4 = 494;
int NOTE_C5 = 523;

In Listing 22-4, the notes.h tab is referenced with quotation marks, as
"notes.h" and not with angular brackets, which is for a library.

Listing 22-4. A Series of Notes

#include "notes.h" // include reference to notes.h tab
int piezoPin = 12; // Piezo transducer pin
int tune[] = {NOTE_C5, NOTE G4, NOTE_G4, NOTE A4,
NOTE_G4, 0, NOTE_ B4, NOTE_C5};
int beats[] = {2, 1, 1, 2, 2, 2, 2, 2}; //length ofnote
int duration;

void setup()
{} // nothing in void setup() function

void loop()
{
for (int i = 0; 1 < 8; i++) // play the 8 notes

{

duration = 125*beats[i]; // duration of note = 125 or 250ms

tone(piezoPin, tune[i], duration); //generate sound

417


http://www.arduino.cc/en/Tutorial/ToneMelody

CHAPTER 22  SOUND AND SQUARE WAVES

delay(duration*1.25); //interval between notes 1.25xnote duration

}

while(1); // stop the "tune" after being played once

}

Switches can be used to switch on sounds, as in a digital piano (see
Figure 22-5 and Table 22-1), with the sound produced as long as the switch is
pressed. Listing 22-5 uses the four notes: G4, A4, B4, and C5, from Listing 22-4.

fritzing

Figure 22-5. Four-note piano

418



CHAPTER 22 SOUND AND SQUARE WAVES

Table 22-1. Four-Note Piano

Component Connect to

Piezo trans VCC ~ Arduino pin 13

Piezo trans GND  Arduino GND

Switch left Arduino pins 8,9, 10,12
Switch right Arduino GND

Listing 22-5. Four-Note Piano

int Note G
int Note A
int Note B
int Note C

int piezoPin

int switch_
int switch A
int switch |
int switch_

G

B
C

void setup()

{

for (int
}
void loop()

{

i

392; // note frequencies (Hz)
440;
494;
523;

13; // Piezo transducer pin
8;

9; // define switches

10;

12;

// pins set HIGH
8; i<13; i++) pinMode(i, INPUT PULLUP);

// sound on switch press

while(digitalRead(switch A) == LOW) tone(piezoPin, Note A);
while(digitalRead(switch B) == LOW) tone(piezoPin, Note B);
while(digitalRead(switch C) == LOW) tone(piezoPin, Note C);
while(digitalRead(switch G) == LOW) tone(piezoPin, Note G);
noTone(piezoPin); // switch off sound

419



CHAPTER 22  SOUND AND SQUARE WAVES

Associating the pressing of a switch with a LOW state seems intuitively
incorrect, but it has the advantage that the switch pins can use the
Arduino’s built-in pull-up 20kQ resistors, rather than connecting 10kQ
pull-up resistors to each switch. The pinMode(pin, INPUT PULLUP)
instruction sets the pin state to HIGH, while pinMode(pin, INPUT) sets the
pin state to LOW. The internal pull-up resistors, on the pins for the four
notes, are initialized with the instruction in the void setup() function.

for (int i = 8; i<13; i++) pinMode(i, INPUT_PULLUP)

Sensor and Sound

A sensor, such as a light dependent resistor (LDR), can be used to
generate a sound with the frequency of the sound dependent on the
sensor input, such as the light intensity. An LDR was used in Chapter 3
to control the brightness of an LED, as the basis of a night light. In the
example (see Figure 22-6 and Table 22-2), the frequency of the Piezo
speaker increases and the LED brightness decreases as the incident
light increases. The map () function converts the LDR reading to a
frequency for the Piezo transducer, with an analog reading of 0 to 900
corresponding to a frequency value of 262Hz to 494Hz, which are notes
C4 to B4 (see Listing 22-6). The map() function also inversely converts
the LED reading to an LED brightness value with the light intensity
class, based on the threshold values: Bright, Light, Dim, and Dark. The
LED is turned on only for low-light intensity, given an upper limit in
the map () function. Each map() function is followed by a constrain()
function to ensure that values remain within the boundary values of the
map() function.

420



CHAPTER 22  SOUND AND SQUARE WAVES

LR L ]

= Ll o o o o =Jllj= v o o

" e " e e e
L I
LI B O
LR I I
L B A

Piezo transducer

LED resistor
220Q

LDR resistor
4,7kQ

fritzing

Figure 22-6. Light sensor, sound, and LED

Table 22-2. Light Sensor, Sound, and LED

Component Connect to and to
Piezo trans VCC Arduino pin 13

Piezo trans GND Arduino GND

LDR left 4.7kQ resistor GND
LDR left Arduino pin A0

LDR right Arduino 5V

LED long leg Arduino pin 9

LED short leg 22042 resistor GND

421



CHAPTER 22  SOUND AND SQUARE WAVES

Listing 22-6. Light Sensor, Sound, and LED

int LDRpin = Ao; // LDR voltage divider
int LEDpin = 9; // LED on PWM pin

int piezoPin = 13; // Piezo transducer pin
int duration = 100; // sound duration (ms)

int LED, LDR, freq;

void setup()

{

}

Serial.begin(9600); // define Serial output baud rate
pinMode(LEDpin, OUTPUT); // LED pin as output
pinMode(piezoPin,OUTPUT); // define Piezo pin as output

void loop()

{

LDR = analogRead(LDRpin); // read LDR
LED = map(LDR, 0, 500, 255, 0); //map LED brightness inversely to LDR
LED = constrain (LED, 0, 255); // constrain LED brightness

freq = map(LDR, 0, 900, 262, 494); //map sound frequency to LDR

freq = constrain (freq, 262, 494); //constrain sound frequency
analogWrite(LEDpin, LED); // set LED brightness

tone (piezoPin, freq, duration); //Piezo pin and frequency defined
Serial.print("Light intensity is "); //message to Serial Monitor
if(LDR >= 750) Serial.println("Bright");

else if(LDR >= 500) Serial.println(“Light"); //display light intensity class
else if(LDR »= 250) Serial.println("Dim");

else Serial.println("Dark");

delay(1000); // delay 1s

422



CHAPTER 22 SOUND AND SQUARE WAVES

The toneAC library by Tim Eckel with the toneAC() function controls
both the frequency and volume of a sound. A .zip file containing the
toneAC library can be downloaded from https://playground.arduino.
cc/Code/ToneAC. Chapter 3 included details on installing a downloaded
library .zip file using either installation method 1 or method 2.

When using the toneAC() function, the Piezo transducer is connected to
Arduino PWM pins 9 and 10. The toneAC(frequency, volume, duration)
instruction defines the sound frequency, the volume on a 0 (off) to 10 (high)
scale, and the sound duration in milliseconds, with 0 corresponding to
forever. The noToneAC() or toneAC(0) instructions stop the sound.

An electro-Theremin can be imitated by moving one hand above an
LDR to change the light intensity and the associated sound frequency
(see Figure 22-7). A second LDR and voltage divider pair are included in
the circuit to control the sound volume, by moving the other hand above
the second LDR (see Table 22-3 and Listing 22-7).

423


https://playground.arduino.cc/Code/ToneAC
https://playground.arduino.cc/Code/ToneAC

CHAPTER 22  SOUND AND SQUARE WAVES

0 Tnpuay mmXy

{_’ ,,,,,,,, ;D ::1

6 8. |

essssvewseesssses s Piezo transducer

LDR resistors
4.7kQ
fritzing
Figure 22-7. Electro-Theremin

Table 22-3. Electro-Theremin
Component Connect to and to
Piezo VCC Arduino pin 9
Piezo GND Arduino pin 10
LDR bottom  Arduino 5V
LDR top Arduino pin A2, A3
LDR top 4.7kQ resistor Arduino GND

424



CHAPTER 22 SOUND AND SQUARE WAVES

Listing 22-7. Electro-Theremin

#include <toneAC.h> // include toneAC library
int LDRFpin = A2; // LDR for frequency
int LDRVpin = A3; // LDR for volume

int LDRF, LDRV, freq, volume;

void setup()
{} // nothing in void setup() function

void loop()

{
LDRF = analogRead(LDRFpin); // LDR for frequency
LDRV = analogRead(LDRVpin); // LDR for volume
freq = map(LDRF, 0, 900, 523, 1047); // map sound frequency C5 to C6

freq = constrain (freq, 523, 1047); // constrain sound frequency
volume = map(LDRV, 0, 900, 0, 10); //map volume to LDRV
volume = constrain (volume, 0, 10); // constrain volume

toneAC (freq, volume, 0); // play sound

Generating Square Waves

Square waves with frequencies 490.1961Hz or 976.5625Hz can be
generated by analogWrite() to Arduino PWM pins 3,9, 10 and 11 or to
pins 5 and 6, respectively. The duty cycle of the square wave is defined as a
multiple of 256. For example, analoghrite(3, 128) and analogWrite(6, 64)
produce square waves with frequencies 490 and 977Hz with 50% and 25%
duty cycles, respectively.

The PWM library generates square waves with frequencies between
1Hz and 2MHz using the 16-bit Timerl. The PWM library by Sam Knight
is contained within a .zip file available at https://code.google.com/
archive/p/arduino-pwm-frequency-library/downloads. Download the
Arduino PWM Frequency Library .zip file and store on the computer or laptop.

425


https://code.google.com/archive/p/arduino-pwm-frequency-library/downloads
https://code.google.com/archive/p/arduino-pwm-frequency-library/downloads

CHAPTER 22  SOUND AND SQUARE WAVES

Extract the PWM folder from the .zip file and install the PWM library
using installation method 2, as described in Chapter 3.

The sketch (see Listing 22-8) produces a square wave with frequency
10kHz on pin 10 with the duty cycle defined by the output of a
potentiometer on analog pin AO. The potentiometer output value is
divided by 4, as maximum values of the potentiometer output and the
pwmiWrite() function are 1023 and 255, respectively.

The InitTimersSafe() and SetPinFrequencySafe(pin, freq)
instructions do not impact Timer0, which controls the delay(), millis()
and micros () functions. Either of the two Timerl pins—Arduino pins 9 or
10—can output the square wave.

Listing 22-8. Square Wave with PWM

#include <PWM.h> // include PWM library
unsigned long freq = 10000; // required frequency (Hz)
int potPin = Ao; // potentiometer pin

int PWMpin = 10; // use pin 9 or 10 (Timer1)

int setFreq;

void setup()

{
pinMode (PWMpin, OUTPUT); // define PWMpin as OUTPUT

InitTimersSafe(); // does not impact Timer0
setFreq = SetPinFrequencySafe(PWMpin, freq); //doesnotimpact Timer0

}
void loop()

{ // output square wave with duty cycle
pwnWrite(PWMpin, analogRead(potPin)/4); //determined by potentiometer

}

426



CHAPTER 22 SOUND AND SQUARE WAVES

Square waves can be generated with timer register manipulation, in
a similar procedure to triggering interrupts, as outlined in Chapter 20.
In Fast PWM 8-bit mode, Timerl counts to 255 (28-1), resets to zero and
starts counting again. When TimerI matches the value in the OCRIB
register, the square wave has value LOW and when Timer1 overflows or
resets to zero, the square wave has value HIGH (see Figure 22-8). If the
value in the OCRI1B register is based on the output of a potentiometer,
then the duty cycle of the square wave can be changed by altering the
potentiometer output. The maximum values of the analog-to-digital
converter (ADC) and the OCRIB register are 1023 and 255, respectively,
so the value from the potentiometer output is either divided by
4 or mapped with the map(analogRead(potPin),0,1023,0,255)
instruction, where potPin is the Arduino pin connected to the

potentiometer.

Counter

Time

PWM square wave

Time

Figure 22-8. PWM square wave

427



CHAPTER 22  SOUND AND SQUARE WAVES

The COM1AI and COM1BI registers enable outputs from OCRIA
and OCRIB on pins OC1A and OC1B, which correspond to Arduino pins
9 and 10, respectively (see Figure 18-1). In Listings 22-9 and 22-10, the
OCRIBregister is used to generate a square wave, which is output on

Arduino pin 10.
pre —scalar x 256

16x10°
seconds, which is equal to 16pus with prescalar of one, which corresponds

In Fast PWM 8-bit mode, TimerI overflows in

to a square wave with frequency 62.5kHz. If the prescalar is increased to
256, the time for Timerl to overflow is 4.1ms, resulting in a square wave
with frequency 244Hz.

Listing 22-9 generates a square wave with a frequency of 62.5kHz and
the output from a potentiometer controls the duty cycle of the square wave.

Listing 22-9. Square Wave with Timer1 Fast PWM 8-bit Mode

int PWMpin = 10; // define PWM pin on Arduino pin 10
int potPin = Ao; // define potentiometer on pin A0
void setup()
{
pinMode(PWMpin, OUTPUT); //define PWMpinas OUTPUT
TCCR1A = 0; // initialise register TCCR1A
TCCR1B = 0; // initialise register TCCR1B

// set compare output mode and set pre-scalar to 1 with Fast PWM 8-bit mode
TCCR1A |= (1<<WGM10) | (12<<COM1B1);
TCCR1B |= (1<<CS10) | (2<<WGM12);

}

void loop()

{
OCR1B = analogRead(potPin)/4; // change OCRI1B register and duty cycle

}

428



CHAPTER 22 SOUND AND SQUARE WAVES

The square wave frequencies generated using the Fast PWM 8-bit
mode are constrained by Timerl counting to 255 and the values of the
prescalar: 1, 8, 64, 256, and 1024, which result in frequencies of 62500,
7812.5, 976.56, 244, and 61Hz, respectively. However, with the Fast PWM
mode, the overflow value of TimerI can be varied to generate square
waves with frequencies between 1Hz and 4MHz. In Fast PWM mode,

16x10°
pre—scalarx frequency’
such that TimerI overflows faster with higher values of the prescalar and

the value that TimerlI counts up to is set by

the required square wave frequency, so that a square wave with the

required frequency is generated. The OCRIA register is set to
16x10°

pre—scalar x frequency

, but reduced by one as the counter starts from

zero. While the OCRIA register controls the square wave frequency, the
OCRIBregister controls the duty cycle of the square wave through
mapping the potentiometer output.

The required frequency determines the value of the prescalar, as the
value of the TimerlI overflow must be an integer; otherwise, the resulting
frequency will not equal the required frequency. For example, prescalars
of 1 and 256 are necessary to generate square waves with frequencies of
200kHz and 2Hz, with the TimerI overflow values equal to 80 and 31250,
respectively.

Listing 22-10 generates a square wave with frequency 50kHz with a
prescalar of one, although a prescalar of 8 or 64 could also be used. The
term F_CPU is the microcontroller clock speed, which is a system constant,
equal to 16MHz. Instructions for setting the TCCR1B register to different
values of the prescalar are given in Table 22-4.

429



CHAPTER 22  SOUND AND SQUARE WAVES

Table 22-4. TCCRI1B Register and Prescalar Values

Prescalar Instruction

1 TCCR1B |= (1<<CS10) | (1<<WGM12) | (1<<WGM13);
8 TCCR1B |= (1<<CS11) | (1<<WGM12) | (1<<WGM13);
64 TCCR1B |= (1<<CS10) | (1<<CS11) | (1<<WGM12) | (1<<WGM13);
256 TCCR1B |= (1<<CS12) | (1<<WGM12) | (1<<WGM13);
1024 TCCR1B |= (1<<CS10) | (1<<CS12) | (1<<WGM12) | (1<<WGM13);

Listing 22-10. Square Wave with Timer1 Fast PWM Mode

int PWMpin
int potPin
unsigned long freq = 50000; //required square wave frequency

10, // define PWM pin on Arduino pin 10
Ao; // define potentiometer on pin A0

int prescalar = 1; // define pre-scalar
int overflow;

void setup()

{
Serial.begin(9600); // define Serial output baud rate
pinMode(PWMpin, OUTPUT); //define PWMpin as OUTPUT
TCCR1A = 0; // initialise register TCCR1A
TCCR1B = 0; // initialise register TCCR1B

// set compare output mode and set pre-scalar to 1 with Fast PWM mode
TCCR1A |= (1<<WGM10) | (2<<WGM11) | (1<<COM1B1);
TCCR1B |= (1<<CS10) | (2<<WGM12) | (2<<WGM13);
overflow = F_CPU / (freq*prescalar); //Timerl overflow value
Serial.println(overflow); //print Timerl overflow value
OCR1A = overflow-1; // counter starts at zero

430



CHAPTER 22  SOUND AND SQUARE WAVES

void loop()
{ // change OCR1B register and duty cycle
OCR1B = map(analogRead(potPin),0,1023,0,0verflow);

}

Square Wave and Servo Motor

A square wave with frequency 50Hz and duty cycle between 2.5% and 12.5%
generates a signal with pulse width between 0.5ms and 2.5ms, which rotates
a servo motor from 0° to 180°, as outlined in Chapter 8. With the servo motor
connected to Arduino pin 10 and Listing 22-10 modified to generate the
required square wave, the servo motor rotation can be controlled with the
potentiometer. A prescalar of 64 is required to generate integer values for
the TimerI overflow of 5000 and with a required frequency of 50Hz, the duty
cycles of 2.5% and 12.5% are generated with OCRIB values of 125 and 625,
respectively. Changes to Listing 22-10 include defining variables,

unsigned long freq = 50; // square wave frequency
int prescalar = 64; // define pre-scalar

setting the prescalar to 64 in the void setup() function,
TCCR1B |= (1<<CS10) |(2<<CS11) | (2<<WGM12) | (1<<WCM13)
and changing the void loop() function to

// duty cycle between 2.5% and 12.5%
OCR1B = map(analogRead(potPin),0,1023,.025%overflow, .125%overflow);

delay(10) // time for servo to move

The PWM library could be used to generate the square wave for driving
the servo motor, rather than setting the Timer|I register. A square wave of
frequency 50Hz and a duty cycle up to 12.5% can be generated with the
PWM library, which only requires changing the frequency in Listing 22-8.

unsigned long freq = 50; // required frequency (Hz)

431



CHAPTER 22  SOUND AND SQUARE WAVES

And changing the void loop() function to

pwmNrite(PWMpin, analogRead(potPin)/32); //duty cycle up to 12.5%
delay(10) // time for servo to move

Summary

Sounds of specific frequencies were generated with a Piezo transducer and
with frequencies inversely related to the incident light on a light dependent
resistor to imitate an electro-Theremin. Square waves were produced with
pulse width modulation (PWM) and from timer register manipulation to
control the movement of a servo motor.

Components List

e Arduino Uno and breadboard

e Piezo transducer

o Switch: 4x tactile

e Resistor: 220Q and 2x4.7kQ

e Capacitor: 0.1pF and 22pF

e LED

o Light dependent resistor (or photoresistor): 2x
o Potentiometer: 2x10kQ

e Servo motor: SG90

o Voltage regulator: L4940V5

e Battery: 9V

432



CHAPTER 23

DC Motors

The DC (direct current) motor has many applications in
N robotics, portable power tools, and electric vehicles. DC

‘%  motors are driven by the force generated in a magnetic

field. Passing a current through an electromagnet, which is
a coil of wire wrapped around a metallic rod, generates a magnetic field
and reversing the current changes the polarity of the electromagnet. Given
that same-pole magnets repel and dissimilar-pole magnets attract, then
mounting two electromagnets on a rotor enclosed within a permanent
magnet and alternating the current through the electromagnets turns the
rotor as the magnets sequentially attract and repel.
The direction of rotation is controlled with an H-bridge, which is

essentially formed by two pairs of transistor switches, on opposite sides
of the motor, and the direction of current, through the motor, changes as
each “diagonally opposite” pair of switches opens (see Figure 23-1). The
L298N motor driver board can control two 6V DC motors and if the supply
voltage is less than 12V, the voltage regulator provides a 5V output pin for
powering an Arduino (see Figure 23-2). If the supply voltage is greater than
12V, then the jumper behind power connections must be disconnected.

© Neil Cameron 2019 433
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_23



CHAPTER 23  DC MOTORS

} battery +

battery - (

Figure 23-1. H-bridge

The L298N motor driver board controls the direction of rotation
and speed of the motors by incorporating an H-bridge for each motor
with PWM. The order of the control pins, on the L298N motor driver
board, is ENA, IN1, and IN2 for the left motor and IN3, IN4, and ENB
for the right motor (see Table 23-1). For the left motor, setting pin IN1
or IN2 to HIGH and the other pin to LOW turns the motor forward or
backward, respectively. Motor speed is controlled using Pulse Width
Modulation (PWM), outlined in Chapter 1, on the ENA (Enable motor A)
and ENB pins. The instruction to set the speed of the left motor is
analoghrite(ENA, speed), where speed is a value between 0 and 255.
If the ENA and ENB pins are not required for controlling the motor
speed, then jumpers can be placed across the pins to connect them to
5V, resulting in full motor speed. If the two motors turn in the opposite
direction from each other, then the connecting wires of one motor
should be reversed.

434



N <
o D
V518388 b

L298N
H=Bridge

CHAPTER 23  DC MOTORS

fritzing
Figure 23-2. L298N and DC motors
Table 23-1. L298N and DC Motors
Component Connect to Arduino and to
Nano Uno
L298 12V Battery 9V Battery 9V
L298 GND Battery GND Battery GND Nano or Uno GND
L298 5V Nano VIN Uno VIN
L298 ENA Nano pin D9 Uno pin 9
L298 INT Nano pin D8 Uno pin 8
L298 IN2 Nano pin D7 Uno pin 7
(continued)

435



CHAPTER 23  DC MOTORS

Table 23-1. (continued)

Component Connect to Arduino and to
L298 IN3 Nano pin D6 Uno pin 6

L298 IN4 Nano pin D5 Uno pin 5

L298 ENB Nano pin D10 Uno pin 10

L298 motor connect DC motors DC motors

IR sensor OUT Nano pin D2 Uno pin 2

IR sensor GND Nano GND Uno GND

IR sensor VCC Nano VIN Uno VIN

An Arduino Nano is used in this chapter because it is smaller than
the Arduino Uno (see Figure 23-3). The Arduino Nano has two more
analog inputs than the Arduino Uno and has a mini USB connection.
The pin layouts of the Arduino Nano and Uno are similar, as indicated
in Table 23-1, so the schematics and sketches are applicable to both the
Arduino Nano and Arduino Uno. Note that from January 2018, Arduino
released a new bootloader for the Arduino Nano and the relevant
processor must be selected.

Within the Arduino IDE, in the Tools » Board menu, select Arduino
Nano. In the Tools » Processor menu, select either ATmega328P (Old
Bootloader) or ATmega328P (if the Arduino Nano was sold by Arduino
before or after January 2018).

436



CHAPTER 23  DC MOTORS

531

o

[ E¥
[l
L

ouTnpJy

[T I I I I I I
28 b7 B o

3 'l_ﬂl' :

fritzing

Figure 23-3. Arduino Nano and Arduino Uno

On the L298N motor driver board, the ENA and ENB pins for
controlling the motor speed are connected to PWM pins 9 and 10 on the
Arduino Nano. Digital (D) pins 3, 5, 6,9, 10 and 11 on the Arduino Nano
can be used for variable output voltage with PWM (see Figure 23-4). The
restrictions on PWM pins outlined in Chapter 18 apply to the Arduino
Nano, which means that analoghirite() on Nano PWM pins D9 and D10
is disabled by the Servo library, on Nano PWM pins D10 and D11 by SPI
and on Nano PWM pins D3 and D11 by the tone() function. The IRRemote
library for infrared remote control also uses Timer2, which disables Nano
PWM pins D3 and D11 for analogWrite().

437



CHAPTER 23  DC MOTORS

@ ¢
Transmit [l ol Voltage input (6-20V)
Receive &g EE) Ground
L 3" i
Ground 48 E8Y 5V output
Interrupt0 g8 b8 Analog input only
Interrupt1 ~ Jg8 B8y Analog input only
@2 Y (12c) scL
Digital e U=R=En
: o3
inputs @5 Analog inputs
3
o AREF
SPI) SS 43
Esp& MOS| CE 3.3V output
(Pl MISO % (SPI) SCK, LED
®

Figure 23-4. Arduino Nano

If the voltage supply to the motors is too low, either by setting the
motor speed too low or the battery power is low, then the motors produce
a buzzing sound and stop turning. A sketch should ensure that the
minimum speed value in an analogWrite() instruction is at least 50.
Likewise, a fully charged 9V battery is required as the voltage drop across
the L298N motor driver board is 2V.

Motor Control Set in the Sketch

The sketch (see Listing 23-1) uses functions for moving forward or
backward and for turning right or left, for a given period of time, with the
motor () function controlling the speed and direction of rotation of each
motor. The motor speed is set higher when moving forward or backward
than when turning right or left. The route taken by the robot car is defined
in the void loop() function. The motors move forward for 1500ms, then

turn right for 500ms, move forward and turn left, move forward and turn

438



CHAPTER 23  DC MOTORS

left again, move forward and turn right, move forward and then move

backward to the starting position.

Listing 23-1. Route Defined in Sketch

int IN1 = 8; // left motor forward and backward pins
int IN2 = 7;

int IN3 = 6; // right motor forward and backward pins
int IN4 = 5;

int ENA = 9; // control pin left motor

int ENB = 10; // control pin right motor

void setup()
{

pinMode(IN1, OUTPUT); // define motor pins as OUTPUT

pinMode(IN2, OUTPUT);
pinMode(IN3, OUTPUT);
pinMode(IN4, OUTPUT);

pinMode (ENA, OUTPUT); // define motor enable pins as OUTPUT

pinMode(ENB, OUTPUT);
}

void loop()

{
direction("forward",1500);
direction("right",500);
direction("forward",1000);
direction("left",500);
direction("forward",1500);
direction("left",500);
direction("forward",1000);
direction("right",500);
direction("forward",1500);
direction("backward",4500);

// move forward for 1500ms
// turn right for 500ms

// turn left for 500ms

// move backward for 4500ms

439



CHAPTER 23  DC MOTORS

void direction(String direct, int runTime) //function to set motor direction

{

if(direct == "forward") motor(1, 0, 1, 0, "fast"); //both motors forward
else
if(direct == "backward") motor(o, 1, 0, 1, "fast"); //both motors backward
else // left forward,
if(direct == "right") motor(1, o, 0, 1, "slow"); //right backward
else // left backward,
if(direct == "left") motor(o, 1, 1, 0, "slow"); //rightforward
else
if(direct == "stop") motor(o, 0, 0, 0, " "); //both motors stop
delay(runTime); // run time (ms) for motors
}
void motor(int leftF, int leftB, int rightF ,int rightB, String speed)
{ // motor function
float bias = 1.0; // bias on motor speed

digitalWrite(IN1, leftF); //control pinIN1 left motor forward
digitalWrite(IN2, leftB); //control pin IN2 left motor backward
digitalWrite(IN3, rightF); //control pin IN3 right motor forward
digitalWrite(IN4, rightB); //control pin IN4 right motor backward
if(speed == "fast")

{
analogWrite(ENA, 100); // higher speed when moving
analoghrite(ENB, 100*bias); //forward or backward

}

else

{
analoghrite(ENA, 80); // lower speed when turning

analogWrite(ENB, 80*bias); //compensation on right motor
}
}

440



CHAPTER 23  DC MOTORS

If the right motor turns slower than the left motor, the PWM value is
increased to compensate, by increasing the value of the variable bias.

Motor Speed

The relationship between motor speed and the analogWrite()
instruction can be derived with a potentiometer, to change the motor
speed (see Figure 23-5), and a Hall effect switch (see Chapter 3) to
determine the time taken for a revolution with a small magnet attached
to the wheel. Motor speed increases non-linearly with potentiometer
value, with a greater change in motor speed at lower potentiometer values
and a maximum motor speed of 230rpm (see Figure 23-6). Measurement
of motor speed with photoelectric encoders is outlined later in the
chapter. Listing 23-2 is based on the Hall effect sketch (see Listing 3-8) in
Chapter 3 and applies to the motor on the right-hand side of the L298N
motor driver board.

441



CHAPTER 23  DC MOTORS

Hall effect switch

. L298N
. H=-Bridge

LR B B O O

fritzing

Figure 23-5. Potentiometer control of DC motor speed

250
o o8
°® ! ‘
— 200 at ¢
3 o
T 4
@
@ 150 J
Q
Wi
5 o}
-
S 10 &
= ‘.
8
50
50 100 150 200 250 300

Potentiometer value

Figure 23-6. Potentiometer and DC motor speed

442



CHAPTER 23  DC MOTORS

Listing 23-2. Hall Effect Sensor and DC Motor Speed

int hallPin = 4; // Hall effect switch pin

int hallState = LOW; // set state to LOW

int IN3 = 6; // motor forward and backward pins
int IN4 = 5;

int ENB = 3; // motor enable pin

int potPin = A6; // potentiometer pin

unsigned long time = 0; // time (ms) per revolution

float hallrpm;
int reading, speed;

void setup()

{
Serial.begin(9600); // set baud rate for Serial Monitor
pinMode(hallPin, INPUT PULLUP); //pull-up resistor on Hall effect switch pin
pinMode(IN3, OUTPUT); // define motor pins as OUTPUT
pinMode(IN4, OUTPUT);
digitalWrite(IN3,1); // set motor to forward rotation
digitalWrite(IN4,0);

}

void loop()

{
reading = analogRead(potPin); // read potentiometer
speed = map(reading, 0, 1023, 0, 255); //map potentiometer value
analoghirite(ENB, speed); // set motor speed
reading = digitalRead(hallPin); // read Hall switch
if(reading != hallState) // Hall switch state changed
{

if (reading == HIGH &8 hallState == LOW) // startof new revolution
{

time = millis() - time; // time (ms) since last revolution
hallrpm = 60000.0/time; // revolutions per minute
Serial.print(speed);Serial.print("\t"); //potentiometer value

443



CHAPTER 23  DC MOTORS

Serial.println(hallrpm,0); //display motor speed (rpm)with 0DP
time = millis(); // update revolution time

}

hallState = reading; // update Hall switch state

}
}

Motor Control with Infrared Remote Control

In Chapter 10, an infrared (IR) remote control was used to turn on or off
LEDs depending on which button was pressed on the remote control.
Similarly, the rotation of the two DC motors can be associated with buttons
on the remote control. To receive the infrared signal, an infrared sensor,
VS1838B, is connected to pin 2 of the Arduino Nano (see Figure 23-2) and
Listing 23-1 is updated to include the following instructions at the start of
the sketch, with the irrecv.enableIRIn()instruction to initialize the IR
receiver included in the void setup() function.

#include <IRremote.h> // include IRemote library

int IRpin = 2; // IR sensor pin

IRrecv irrecv(IRpin); // associate irrecv with IRremote library
decode_results reading; // IRremote reading

The void loop() function of Listing 23-3 is replaced to read the infrared
signal and the remote control signal is also mapped with a switch case
sequence to the corresponding function for controlling the motors to move
for 500ms. Note that the hexadecimal signal codes are only an example.

444



CHAPTER 23  DC MOTORS

Listing 23-3. DC Motor Control with Infrared Remote Control

void loop()
{

if(irrecv.decode(8reading)) // read the IR signal

{

switch(reading.value) // switch ... case for button signals

{

case 0xCOE014D: direction("forward",500); break; //forward

case OX9FFCDC4D: direction("backward",500); break; //backward
case 0x348ADDOF: direction("right",500); break; //turn right
case 0x7E57898D: direction("left",500); break; //turnleft

case Ox4BOAA72C: direction("stop",500); break; //stop

}

irrecv.resume(); // receive the next infrared signal

}
}

As noted, the IRRemote library for infrared remote control uses Timer2,
which disables Nano PWM pins D3 and D11 for analogWrite() on the
L298N motor driver board ENA and ENB pins.

Motor Control with Wireless Communication

In Chapter 17, nRF24L01 wireless transceiver modules enabled
communication between two devices. The nRF24L01 transceiver modules
can be used, in conjunction with a joystick, such as a KY-023 module, to
control the DC motors remotely. One nRF24L.01 module transmits PWM
values derived from the joystick readings to the receiving nRF24L01
module, which controls the motor speeds with the PWM values. The
transmitting nRF241.01 module and joystick are connected to an Arduino
Uno or Nano (see Figure 23-7 and Table 23-2) and the receiving nRF24L01
module, two DC motors, and the L298N motor driver board are attached to
an Arduino Nano (see Figure 23-8 and Table 23-3).

445



CHAPTER 23  DC MOTORS

joystick

nRF24L01

fritzing

Figure 23-7. Joystick and transmitting nRF24L01 module

446

Table 23-2. Joystick and Transmitting nRF24L01 Module

Component Connect to
Joystick VCC Nano 5V Uno 5V
Joystick VER (Y) Nano pin A5 Uno pin A3
Joystick HOR (X) Nano pin A6 Uno pin A4
Joystick GND Nano GND Uno GND
nRF24L01 GND Nano GND Uno GND
nRF24L01 CE Nano pin D7 Uno pin 7
nRF24L01 SCK Nano pin D13 Uno pin 13
nRF24L01 MISO Nano pin D12 Uno pin 12
NnRF24L01 VCC Nano 3V3 Uno 3.3V
nRF24L01 CSN Nano pin D8 Uno pin 8
nRF24L01 MOSI Nano pin D11 Uno pin 11




CHAPTER 23  DC MOTORS

fritzing

Figure 23-8. DC motors and receiving nRF24L01 module

Table 23-3. DC Motors and Receiving nRF24L01 Module

Component Connect to and to
L298 12V Battery 9V
L298 GND Battery GND Nano GND
L298 5V Nano VIN
L298 ENA 5V jumper
L298 IN1 Nano PWM pin D10
L298 IN2 Nano PWM pin D9
L298 IN3 Nano PWM pin D6
1298 IN4 Nano PWM pin D5
(continued)

447



CHAPTER 23  DC MOTORS

Table 23-3. (continued)

Gomponent Connect to and to
L298 ENB 5V jumper

L298 motor connect DC motors

nRF24L01 GND Nano GND

nRF24L01 CE Nano pin D7

nRF24L01 SCK Nano pin D13

nRF24L01 MISO Nano pin D12

nRF24L01 VCC Nano 3V3

nRF24L01 CSN Nano pin D8

nRF24L01 MOSI Nano pin D11

The motor speed and direction of rotation can be directly controlled
with PWM inputs to the L298N motor driver board INI, IN2, IN3, and IN4
pins, as the Arduino Nano has several PWM pins. For example, to move

forward at half speed, the instruction is

analogWrite(IN1, 128);
analoghrite(IN2, 0);
analogWrite(IN3, 128);
analoghrite(IN4, 0);

Jumpers are placed across the ENA and ENB pins to 5V, as the ENA and

ENB pins are not required to control motor speed, when using PWM (see

Figure 23-8).

The control pins of the L298N motor driver board are connected to

Arduino Nano PWM pins 5, 6, 9, and 10 to use analoghirite() instructions

in the motor () function. The analoghrite(pin, value) instruction

automatically sets the pinMode status of a pin to OUTPUT, so when only

using the analoghrite(), the pinMode(pin, OUTPUT) instruction is not

448



CHAPTER 23  DC MOTORS

required. Although, inclusion of the pinMode (pin, OUTPUT) instruction
may be helpful to identify which pins are used in the sketch.

The motor speed and direction of rotation can be controlled with
a joystick (see Listing 23-4), which consists of two potentiometers for
controlling the left-right direction (X-axis) and the forward-backward
direction (Y-axis). The joystick values range from 0 to 1023, with 0
corresponding to right and forward, 1023 mapping to left and backward
and 512 equivalent to the “rest” position of the joystick. The left-right, LR,
and forward-backward, FB, joystick readings are converted to PWM values
for the left and right motors as the sum (FB + LR) and difference (FB - LR)
of the FB and LR readings. The sum retains the magnitude of the forward-
backward reading and the difference increases the speed of one motor and
reduces the speed of the other motor to make a turn. Different scalars for
the FB and LR readings are used to alter the sensitivity of the joystick to
movements in the two axes.

Listing 23-4. Joystick and Transmitting nRF241.01

#include <SPI.h> // include SPI library
#include <RF24.h> // include RF24 library
RF24 radio(7, 8); // associate radio with RF24 library
byte addresses[ ][6] = {"12"};
typedef struct // define a structure to contain
{ // PWM values for the
int right, left; // left and right motors
} dataStruct;
dataStruct data; // name the structure

int LRpin = A5; //Nano A5 Uno A4 (horizontal) left-right (X-axis)

int FBpin = A6; //Nano A6 Uno A3 (vertical) forward-backward (Y-axis)
int LR, FB;

int minPWM = 50; // minimum PWM value

int LRscalar = 2; // scalars for joystick sensitivity

int FBscalar = 2;

449



CHAPTER 23  DC MOTORS

void setup()

{

radio.begin(); // initialise radio
radio.openhWritingPipe(addresses[0]); //open transmitting pipe

}

void loop()

{
LR = map(analogRead(LRpin), 0, 1023, -255, 255); //joystickleft=0
FB = map(analogRead(FBpin), 0, 1023, 255, -255); //joystick forward=0
data.left = FB/FBscalar + LR/LRscalar; //sum ofscaled readings
data.right = FB/FBscalar - LR/LRscalar; //difference scaled readings
data.left = constrain(data.left, -255, 255); //constrain PWM values
data.right = constrain(data.right, -255, 255);
if(abs(data.left) < minPWM) data.left = 0; //zero if < minimum value
if(abs(data.right) < minPWM) data.right = 0;
radio.write(8data, sizeof(data)); // transmit PWM values
delay(50); // delay 50ms

The sketch for the receiving nRF241L.01 module is given in Listing 23-5.

Listing 23-5. DC Motors and Receiving nRF241.01

#include <SPI.h> // include SPI library
#include <RF24.h> // include RF24 library
RF24 radio(7, 8); // associate radio with RF24 library
byte addresses[ ][6] = {"12"};
typedef struct // define a structure to contain
{ // PWM values for the
int right, left; // left and right motors
} dataStruct;
dataStruct data; // name the structure
int IN1 = 10; // left motor forward and backward on PWM pins
int IN2 = 9;

450



CHAPTER 23  DC MOTORS

int IN3
int IN4

6; // right motor forward and backward
5;

void setup()

{
radio.begin(); // initialise radio
radio.openReadingPipe(0, addresses[0]); //open receiving pipe
radio.startListening(); //initialise receive

}
void loop()
{
if(radio.available()) // signal received
{
radio.read(8data,sizeof(data)); // read data values
// forward
if(data.left>0 8& data.right>0) motor(data.left, 0, data.right, 0);
else // backward
if(data.left<o 8& data.right<o) motor(o, -data.left, 0, -data.right);
else // turn left
if(data.left<o 8& data.right>0) motor(o, -data.left, data.right, 0);
else // turn right
if(data.left>0 8& data.right<0) motor(data.left, 0, 0, -data.right);
else motor(o, 0, 0, 0); // stop
}
}

void motor(int leftF, int leftB, int rightF ,int rightB)
{

analogWrite(IN1, leftF); //control pinIN1 left motor forward
analogrite(IN2, leftB); //control pin IN2 left motor backward
analogWrite(IN3, rightF); //control pin IN3 right motor forward
analogWrite(IN4, rightB); //control pin IN4 right motor backward

}

451



CHAPTER 23  DC MOTORS

Motor Control with Accelerometer

The direction and degree of tilt of the GY-521 module, incorporating

an accelerometer, can be used to control the direction and speed of
rotation of the motors. The schematic for the GY-521 module with the
transmitting nRF24L01 module (see Figure 23-9) is similar to schematic
with the joystick (see Figure 23-7). Note that jumpers are placed across
the ENA and ENB pins of the L298N motor driver board and 5V, as the
ENA and ENB pins are not required to control motor speed (see

Table 23-4). The sketch (see Listing 23-6) for the GY-521 and transmitting
nRF241.01 modules is based on the accelerometer and gyroscope sketch
(see Listing 3-13) in Chapter 3 with the RF24 library for transmitting the
transformed roll and pitch MPU-6050 values to the Arduino Nano or Uno
to drive the motors. The sketch for the receiving nRF24L01 module is
unchanged (see Listing 23-5).

LR B B O N N B B A O B A O

nRF24L01

fritzing

Figure 23-9. GY-521 and transmitting nRF24101

452



CHAPTER 23  DC MOTORS

The GY-521 module is orientated as in Figure 23-9, with the top-bottom

and left-right axes corresponding to pitch and roll, respectively.

Table 23-4. GY-521 and Transmitting nRF24L01

Component Connect to
GY-521VCC Nano 5V Uno 5V
GY-521 GND Nano GND Uno GND
GY-521 SCL Nano pin A5 Uno pin A5
GY-521 SDA Nano pin A4 Uno pin A4
nRF24L01 GND Nano GND Uno GND
nRF24L01 CE Nano pin D7 Uno pin 7
nRF24L071 SCK Nano pin D13 Uno pin 13
nRF24L01 MISO Nano pin D12 Uno pin 12
nRF24L01 VCC Nano 3V3 Uno 3.3V
nRF24L01 CSN Nano pin D8 Uno pin 8
nRF24L01 MOSI Nano pin D11 Uno pin 11

Listing 23-6. GY-521 and Transmitting nRF241.01

#include<Wire.h>

int I2Caddress = 0x68;

float accelX, accelY, accelZ;
float roll, pitch, sumsquare;
#include <SPI.h>

#include <RF24.h>

RF24 radio(7, 8);

byte addresses[ ][6] = {"12"};

// include Wire library
// 12C address of MPU-6050
// values from MPU-6050

// include SPI library

// include RF24 library
// associate radio with RF24 library

453



CHAPTER 23  DC MOTORS

typedef struct
{

int right, left;
} dataStruct;
dataStruct data;
int minPWM = 50;
int FB, LR;
int LRscalar = 1;

void setup()

{
Serial.begin(9600);
Wire.begin();

// define a structure

// PWM values for the DC motors

// minimum PWM value

// scalar for accelerometer sensitivity

// initiate I12C bus

Wire.beginTransmission(I2Caddress); //transmitto device at 2Caddress

Wire.write(Ox6B);
Wire.write(0);

Wire.endTransmission(1);

radio.begin();

// PWR_MGMT _1 register

// set to zero to wake up MPU-6050
// end of transmission

// initialise radio

radio.openhWritingPipe(addresses[0]); //open transmitting pipe

}

void loop()
{

Wire.beginTransmission(I2Caddress); //transmitto device at [2Caddress

Wire.write(0x3B);

Wire.endTransmission(0);

// start reading from register 0x3B

// transmission not finished

Wire.requestFrom(I2Caddress,6,true); //requestdata from 6 registers

accelX=Wire.read()<<8|Wire.read(); //combine AxHigh and AxLow values

accelY=Wire.read()<<8|Wire.read(); //combine AyHigh and AyLow values

accelZ=Wire.read()<<8|Wire.read(); //combine AzHigh and AzLow values

454



CHAPTER 23  DC MOTORS

accelX = accelX/pow(2,14);
accelY = accelY/pow(2,14); // scale X, Y and Z measurements
accelZ = accelZ/pow(2,14);

sumsquare = sqrt(accelX*accelX+accelY*accelY+accelZ*accelZ);
accelX = accelX/sumsquare;

accelY = accelY/sumsquare; //adjusted accelerometer measurements
accelZ = accelZ/sumsquare;

roll = atan2(accelY, accelZ)*180/PI; //roll angle

pitch = -asin(accelX)*180/PI; // pitch angle

LR = map(pitch, -90, 90, -255, 255); //tilt module left or right

FB = map(roll, -90, 90, -255, 255); //tilt module forward or backward
data.left = FB + LR/LRscalar; // sum of scaled readings
data.right = FB - LR/LRscalar; // difference of scaled readings
data.left = constrain(data.left, -255, 255); //constrain PWM values
data.right = constrain(data.right, -255, 255);

if(abs(data.left) < minPWM) data.left = 0; //zero PWM values if
if(abs(data.right) < minPWM) data.right = 0; //less than minimum value
radio.write(8data, sizeof(data));  //transmit PWM values
delay(50); // delay 50ms

An OLED display, outlined in Chapter 13, can display the motor speed
values, derived from the MCU-6050 accelerometer with the transmitting
nRF241.01 module. The following instructions are included at the start of
Listing 23-6 to define the OLED display.

#include <Adafruit GFX.h> // include Adafruit GFX library
#include <Adafruit SSD1306.h> // include Adafruit SSD1306 library

Adafruit SSD1306 oled(-1) //associate display with Adafruit_ SSD1306 library
int FBspeed, LRspeed; // define speed variables for OLED

455



CHAPTER 23  DC MOTORS

with instructions to initialize the OLED Display in the void setup()
function (see Listing 23-7) and instructions to display the motor speeds in
the void loop() function (see Listing 23-8).

Listing 23-7. Initialize OLED Display with an 12C Address

oled.begin(SSD1306_SWITCHCAPVCC, 0x3C);

oled.clearDisplay(); // clear OLED display
oled.setTextColor (WHITE); // set font colour
oled.setTextSize(2); // set font size
oled.display(); // start display instructions

Listing 23-8. Display Motor Speeds on OLED

FBspeed = data.left;

LRspeed = data.right;

oled.clearDisplay(); // clear OLED display
oled.setCursor(0,0); // position cursor at (0, 0)
oled.print("left: "); // display text and motor speed
oled.println(FBspeed); // followed by a carriage return
oled.print("right: "); // display text and motor speed
oled.print(LRspeed);

oled.display(); // start display instructions

The OLED display display.print(data.left) instruction displays
a character rather than an integer, which is resolved by including the
FBspeed = data.leftand display.print(FBspeed) instructions and
similarly for LRspeed and data.right, in the void loop() function.

456



CHAPTER 23  DC MOTORS

Motor Control with Photoelectric Encoder

£ The HC-020K (left) and FC-03 (right)
ﬁ * % photoelectric encoders contain an
h infrared LED and phototransistor

sensor, which passes current when light is detected, and an LM393
comparator that converts the change in current to a digital value. An
encoder wheel, containing a number of slots, is attached to the DC
motor and the photoelectric encoder is positioned around the encoder
wheel. When the DC motor rotates, the photoelectric encoder counts
the number of encoder wheel slots passing between the infrared LED
and phototransistor sensor. With s slots in the encoder wheel and N slots
counted in ¢ seconds, the speed of the DC motor is 60 x N/s x t rpm. For
example, with 20 slots in the encoder wheel, then 10 slots counted in
500ms equates to 60rpm.

A 100nF capacitor is required between the signal (OUT) and GND
pins of the HC-202K photoelectric encoder and between the D0 and
GND pins of the FC-03 photoelectric encoder, otherwise the number of
counts is increased by a factor of approximately four. The A0 output of
the FC-03 photoelectric encoder does not require a capacitor to be fitted.
The photoelectric encoder signal pins are connected to the interrupt pins
of the Arduino Uno (2 and 3) or Nano (D2 and D3), with the VCC pins
connected to 5V (see Figure 23-10 and Table 23-5).

457



CHAPTER 23

DC MOTORS

Table 23-5. DC Motors with Photoelectric Encoders

Component Connect to and to
L298 12V Battery 9V

L298 GND Battery GND Nano GND
L298 5V Nano VIN

L298 ENA 5V jumper

L298 IN1 Nano PWM pin D10

L298 IN2 Nano PWM pin D9

L298 IN3 Nano PWM pin D6

L298 IN4 Nano PWM pin D5

L298 ENB 5V jumper

L298 motor connect DC motors

FC-03 encoder AO pins ~ Nano pins D2 and D3

FC-03 encoder VCC Nano 5V

FC-03 encoder GND

Nano GND




CHAPTER 23  DC MOTORS

fritzing

Figure 23-10. DC motors and photoelectric encoders

To measure the speed of a DC motor, the two sketches in Table 23-6
use interrupts (as outlined in Chapter 20) with the TimerOne library and
themillis() function to count the number of encoder wheel slots in the
fixed time period of 0.5 seconds. The motor turns at a fixed speed and
is powered on Arduino PWM pins 5 and 6. With the TimerOne library,
the timerISR and counter interrupts occur after the fixed time period
and after the photoelectric encoder detects a slot, respectively. With the
millis() function, counter is the only interrupt and the count variable is
declared as volatile, as it is referenced in both the sketch and the ISR
(outlined in Chapter 20). Note that the TimerOne library measures time in
microseconds, while millis() measures time in milliseconds.

459



CHAPTER 23  DC MOTORS

To measure the speed of two DC motors, rather than only one DC motor,

the Arduino interrupt pins, 2 and 3, are connected to the photoelectric

encoder output corresponding to each motor. The two DC motors are
powered by Arduino PWM pins 5 and 6 and by PWM pins 9 and 10. The
encoder slot counter interrupts must be controlled by themillis() function,

as the TimerOne library disables the analoghirite()instruction on Arduino

PWM pins 9 and 10.

Table 23-6. DC Motors and Photoelectric Encoders with TimerOne

Library or millis() Function

TimerOne library

Use millis()

Comments

#include <TimerOne.h>

float fixTime = 0.5;

float rpm;

int count=0;

intIN1 = 6;

intIN2 = 5;

int slot = 20;

void setup()

{
Serial.begin(9600);
Timer1.initialize(50000);
attachinterrupt (0, counter, RISING);
Timer1.attachinterrupt (timerISR);
analogWrite(IN1, 60);
analogWrite(IN2, 0);

unsigned long Atime = 0;
int fixTime = 500;

float chkTime;

float rpm;

volatile int count = 0;
intIN1 = 6;

intIN2 = 5;

int slot = 20;

void setup()

{
Serial.begin(9600);

attachinterrupt (0, counter, RISING);

analogWrite(IN1, 60);

analogWrite(IN2, 0);
}

rpm every 0.5

motor pins

number of wheel slots

Serial baud rate

TimerOne for 0.5s
counter interrupts
timerlISR interrupt

motor set ~60 rpm

460

(continued)



Table 23-6. (continued)

CHAPTER 23  DC MOTORS

TimerOne library Use millis() Comments
void loop() void loop()
{} {
if (millis() - Atime >= fixTime) rpm after fixTime
void timerISR() rpm after 0.5s
{ {

nolnterrupts();

rpm = 60*count/(slot*fixTime);
Serial.print("rpm = ");
Serial.printin(rpm, 0);

count = 0;

interrupts();

}

void counter()

{

count++;

}

}
}

nolnterrupts();

chkTime = (millis() - Atime)/1000.0;
rpm = 60*count/(slot*chkTime);
Serial.print("rpm = ");
Serial.printin(rpm, 0);

count = 0;

Atime = millis();

interrupts();

void counter()

{

}

count++;

stop interrupts

calculate rpm

reset counter

reset elapsed time

restart interrupts

interrupt ISR

increment count

The distance travelled by the robot car can be monitored with the

photoelectric encoder. The number of encoder wheel slots that must pass

the photoelectric encoder for the robot car to move a distance, D, is D x

s/m x d, where s is the number of encoder wheel slots and d is the diameter

of the robot car wheel. For the robot car to turn right or left, the number of

encoder wheel slots that must pass the photoelectric encoder is s x W/4 x d,
where Wis the distance between the midpoint of the two wheels. The

value of s x W/4 x d should be rounded up to an integer with the turnSlot =
round(s * W /(4 * d)) instruction.

461



CHAPTER 23  DC MOTORS

The photoelectric encoders can be used to move the robot car
through an exact route by determining the number of slots required
to pass the photoelectric encoder to move a given distance. The same
route taken in Listing 23-1, which moved the robot car for a given time
in each direction of the route, is taken in Listing 23-9, but the robot car
is moved a set distance in each direction of the route, with substantially
more “accuracy.”

Listing 23-9 includes two interrupts to count the number of encoder
wheel slots passing the photoelectric encoder of each DC motor. The
direction() function specifies the direction and distance to move, sets
the direction of rotation of each DC motor and then awhile() instruction
monitors the values of the counters, which correspond to the number of
encoder wheel slots passing the photoelectric encoder. The DC motors
are not synchronized and the DC motors stop after both photoelectric
encoders count the required number of slots. The DC motor speed is
defined in the motor () function, with the sketch using values of 100 and 80
for forward or backward and for turn right or left, respectively.

Listing 23-9. Distance Travelled by the Robot Car

int IN1 = 10; // left wheel forward and backward

int IN2 = 9;

int IN3 = 6; // right wheel forward and backward

int IN4 = 5;

float W = 13.0; // distance (cm) between mid-point of wheels
float d = 6.7; // diameter (cm) of wheel

int slot = 20; // number of encoder wheel slots

float turnSlot = slot * W /(4 * d); //number ofslots to turn right/left
float cmSlot = slot/(PI*d); // number of slots to move one cm
volatile int countR = 0; // counter for encoder wheel slots
volatile int countlL = 0;

int FBspeed = 100; // forward/backward speed

int LRspeed = 80; // left/right turn speed

462



CHAPTER 23  DC MOTORS

void setup()

{

}

attachInterrupt(o, counterR, RISING); //interrupts to count encoder wheel
attachInterrupt(1, counterlL, RISING); //slots passing photoelectric encoder

void loop()

{

}

direction("forward", 40); // function to define direction
direction("right", 0); // and distance (cm)
direction("forward", 30);

direction("left", 0);

direction("forward", 20);

direction("left", 0);

direction("forward", 30);

direction("right", 0);

direction("forward", 50);

direction("backward", 110);

direction("stop", 0);

delay(5000); // delay 5s on completing route

void direction(String direct, int dist) //function controlling DC motors

{

int Nslots; // number of slots to count
if(direct == "forward" || direct == "backward")Nslots = dist*cmSlot;
else if(direct == "right" || direct == "left") Nslots = turnSlot;
else if(direct == "stop")

{
Nslots = 0;
countL = 1; // to stop, set counters above slot limit
countR = 1;

}

463



CHAPTER 23  DC MOTORS

Serial.println(Nslots); // set motor then count slots
if(direct == "forward") motor(1, 0, 1, 0, FBspeed);
else if(direct == "backward") motor(o, 1, 0, 1, FBspeed);
else if(direct == "right") motor(1, 0, 0, 1, LRspeed);
else if(direct == "left") motor(0, 1, 1, 0, LRspeed);

// wait until slot limit reached by both motors
while (countR <= Nslots || countL <= Nslots) { }
if(countR > Nslots && countL > Nslots)

{ // both wheels have moved the required distance
motor(0, 0, 0, 0, 0); // reset all variables
delay(500);
countR = 0;
countL = 0;

}

}

void motor(int leftF, int leftB, int rightF ,int rightB, int cspeed)
{
analoghrite(IN1, leftF * cspeed); //forward speed ofleft motor
analoghrite(IN2, leftB * cspeed); //backward speed ofleft motor
analogWrite(IN3, rightF * cspeed); //forward speed of right motor
analogWrite(IN4, rightB * cspeed); //backward speed right motor

}

void counterR()

{ // interrupt to count number of encoder wheel
countR++; // slots passing right wheel encoder

}

void counterL()

{ // interrupt to count number of encoder wheel
countlL++; // slots passing left wheel encoder

}

464



CHAPTER 23  DC MOTORS

Summary

DC motors powered a robot car controlled by an Arduino Nano or Arduino

Uno with the route taken either defined in the sketch or controlled by

infrared remote control or wirelessly using transceivers with a joystick

or by tilting an accelerometer module. DC motor speed was determined

using a Hall effect sensor and by photoelectric encoders. The distance

travelled was controlled by photoelectric encoders.

Components List

Arduino Nano or Uno and breadboard: 2x

DC motors: 2x

Motor driver board: L298N

Battery: 9V

Infrared sensor: VS1838B

Infrared remote control

Hall effect sensor

Magnet

Potentiometer: 10kQ

Joystick

Wireless transceiver module: 2x nRF241L01
Accelerometer and gyroscope module: GY-521
OLED display: 128x32 pixel

Photoelectric encoder: 2x HC-020K or 2x FC-03
Capacitor: 2x 100nF

Encoder wheel: 2x

465



CHAPTER 24

Robot Car

Building a robot car combines devices outlined in
several chapters, with DC motors in Chapter 23, a servo
motor in Chapter 8, an ultrasonic distance sensor in
Chapter 3, an OLED display in Chapter 13, and an RGB
LED in Chapter 14. The obstacle-avoiding robot car

detects the distance to surrounding objects in front of the robot car, and
if the distance is below a threshold, the robot car stops and scans left and
right to determine the direction away from the nearest obstacle. An RGB
LED indicates the direction of the turn. The distances from the robot car
are shown on the OLED display (see Figure 24-1).

With several devices requiring connection to the Arduino Nano, there
are some constraints on pin availability. Arduino Nano PWM pins D9 and
D10 are used by the Servo library for controlling the SG90 servo motor,
which excludes those pins from being used to enable motors on the L298N
motor driver board with PWM. Arduino Nano pins A4 and A5 are the SDA
and SCK pins for I2C communication with the OLED display. Arduino Nano
pins A6 and A7 are for analog input only and not for digital input. The same
constraints apply to the Arduino Uno, apart from the A6 and A7 pins.

© Neil Cameron 2019 467
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_24



CHAPTER 24  ROBOT CAR

- on e iy ::
L, e OLED 128x32
Lt = L L - - -.-
i ool * —
-+ B
Ik ° 28 b
s Mt )
—r 4 el
- ==
| G |
U LED connecting
RGBLED (" \ires are LED colour

fritzing

Figure 24-1. Robot car with servo, scanner, RGB, LED, and OLED

The motor enable pins, ENA and ENB of the L298N motor driver
board, and the I2C SCK and SDA pins, of the OLED display, are connected
to Arduino Nano PWM and analog pins, respectively, but all other
connections are to Arduino Nano digital pins or analog pins treated as
digital pins (see Figure 24-1). The OLED display VCC pin is connected
to 3.3V, while the Arduino Nano VIN, SG90 servo motor and HC-SR04
ultrasonic distance sensor VCC pins are connected to the 5V rail. Pin
connections are given in Table 24-1, which is also applicable to the
Arduino Uno with the exception of analog pins A6 and A7.

468



CHAPTER 24  ROBOT CAR

The SG90 servo motor and HC-SR04 ultrasonic scanner are powered
from the 5V rail. The GND pins of the Arduino Nano, L298N motor
driver board, servo motor, ultrasonic scanner and OLED display are all

connected together.

Table 24-1. Robot Car with Servo, Scanner, RGB LED, and OLED

Connect to Arduino Nano pins Connect to
X1 VIN 5V ralil
RX0 GND  OLED GND
HC-SR04 GND
RST RST
L298N GND GND 5V HC-SR04 VCC
Servo motor GND Servo motor VCC
D2 A7
ENB right motor D3 PWM A6
D4 A5 OLED SCK
IN4 right motor D5 A4 OLED SDA
IN3 right motor D6 A3 HC-SR04 Trig pin
IN2 left motor D7 A2 HC-SR04 Echo pin
INT left motor D8 Al Servo motor pin
RGB LED red D9 A0
RGB LED green D10 REF
ENA left motor D11 PWM 3V3  OLEDVCC
RGB LED blue D12 D13

469



CHAPTER 24  ROBOT CAR

The sketch (see Listing 24-1) includes the libraries Servo for the SG90
servo motor, NewPing for the HC-SR04 ultrasonic distance sensor, with
Adafruit GFX and Adafruit SSD1306 for the OLED display. After defining
the libraries and the device pins connected to the Arduino Nano, the
sketch clears the OLED display and defines the OUTPUT pins of the L298N
motor driver board and the RGB LED. In the void loop() function, the
distance in front of the robot car is measured and if greater that 20cm, the
robot car moves forward. Otherwise, the robot car stops, measures the
distances to the left and right of the robot car, then the robot car turns in
the direction with the greater distance, provided it is longer than 15cm. If
all distances are short, then the robot car moves backward and distances
are measured again. An RGB LED indicates when the robot car meets an
obstacle (blue), turns left (green), turns right (red) or moves backward
(yellow). To best visualize the colors, place a ping-pong ball on top of the
RGB LED.

The sketch includes the functions: turn(), direction(), motor(),
scan(), and distance(). The turn() function turns on and off the red,
green, or blue LED to indicate a right or left turn or scanning and calls the
direction() function. The direction() function controls the direction of
rotation of the DC motors based on the keywords forward, backward, left,
or right, which are determined from the distance to the nearest obstacle
as measured by the ultrasonic scanner. The motor () function controls the
speed of rotation of the DC motors with the analogWrite() instruction
to the motor control pins ENA and ENB on the L.298N motor driver board
and the digitalWrite() instruction to the DC motor control pins IN1,
IN2, IN3 and IN4. The scan() function moves the servo motor to the
scanning angle, scans the distance and calls the distance() function,
which displays, on the OLED display, the distance in front of the obstacle-
avoiding robot car.

470



CHAPTER 24  ROBOT CAR

The sketch is long, but when broken down into the component parts as

functions, the sketch only contains instructions that have been outlined in

previous projects.

Listing 24-1. Robot Car with Servo, Scanner, RGB LED, and OLED

#include <Servo.h>
Servo servo;

int servoPin = A1;
#include <NewPing.h>

int trigPin = A2;
int echoPin = A3;
int maxdist = 70;

NewPing sonar(trigPin, echoPin, maxdist);

#include <Adafruit GFX.h>
#include <Adafruit SSD1306.h>

// include Servo library

// associate servo with Servo library
// servo motor pin

// include NewPing library

// ultrasound trigger pin

// ultrasound echo pin

// set maximum scan distance (cm)

// associate sonar with
// NewPing library

// include Adafruit GFX library

// include Adafruit SSD1306 library

Adafruit SSD1306 oled(-1); //associate oled with Adafruit_SSD1306 library

int redLED = 10;
int greenlLED = 12;
int bluelED = 13;

int IN1 = 8;
int IN2 = 7;
int IN3 = 6;
int IN4 = 5;
int ENA = 11;
int ENB = 3;
int scanTime = 250;
int turnTime = 500;

int motorSpeed;
float bias = 0.95;

// RGB LED pins

// left motor forward and backward pins
// right motor forward and backward pins
// left motor enable pin

// right motor enable pin

// set time between scans (ms)

// time to make turn or move backward

// bias speed of right motor

float leftDist, rightDist, frontDist, frontDistR, frontDistL;

471



CHAPTER 24  ROBOT CAR

void setup()

{
servo.attach(servoPin); // attach servo motor pin
oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // OLED display and I2C address
oled.setTextColor (WHITE); // set font colour
oled.setTextSize(2); // set font size
oled.clearDisplay(); // clear OLED display
oled.display(); // start display instructions

pinMode(redLED, OUTPUT);

pinMode(greenLED, OUTPUT); // define RGB LED pins as OUTPUT
pinMode(blueLED, OUTPUT);

pinMode(trigPin, OUTPUT); // define trigger pin as OUTPUT
pinMode(IN1, OUTPUT);

pinMode(IN2, OUTPUT); // define motor pins as OUTPUT
pinMode(IN3, OUTPUT);

pinMode(IN4, OUTPUT);

}
void loop()
{
servo.write(100); // scan front left (100°), return distance
frontDistL = (sonar.ping median(5)/2.0)*0.0343;
delay(50);
servo.write(80); // scan front right (80°), return distance

frontDistR = (sonar.ping median(5)/2.0)*0.0343;
frontDist = min(frontDistL,frontDistR); // minimum of front distances
distance("front", frontDist);

472



CHAPTER 24  ROBOT CAR

if(frontDist »>20) direction("forward",100); // move forward if clear
else
{
direction("stop", 100); // stop to start scanning
digitalWrite(blueLED, HIGH); // turn on blue LED to indicate
// scanning
leftDist = scan(170, "left"); //scan 170°and return distance
rightDist = scan(10, "right"); //scan 10°and return distance
digitalWrite(blueLED, LOW); // turn off blue LED
if(rightDist <15 8& leftDist <15) //move backif clear
{ // distance <15cm
digitalWrite(greenLED, HIGH); //turn onred and green LEDs
turn(redLED, "backward"); // to create yellow colour
digitalWrite(greenLED, LOW);
}
else if(leftDist > rightDist) turn(greenLED, "left"); //turn left
else if(rightDist > leftDist) turn(redLED, "right"); //turnright
}
}

void turn (int LED, String direct) //function to turn right or left

{

digitalWrite(LED, HIGH); // turn on LED
direction(direct, turnTime); // call function to control motors
digitalWrite(LED, LOW); // turn off LED

}

void direction(String direct, int runTime) //function to set motor direction

{

if(direct == "forward") motor(1, 0, 1, 0, 1); //both motors forward fast

473



CHAPTER 24  ROBOT CAR

else
if(direct == "backward") motor(o, 1, 0, 1, 1); //both motors

// backward fast
else if(direct == "right") motor(1, 0, 0, 1, 0); //left forward,

// right backward
else if(direct == "left") motor(o, 1, 1, 0, 0); //left backward,

// right forward
else if(direct == "stop") motor(o, 0, 0, 0, 0); //both motors stop
delay(runTime); // run time (ms) for motors

}

void motor(int leftF, int leftB, int rightF ,int rightB, int speed)
{
digitalWrite(IN1, leftF); // control pin IN1 left motor forward
digitalWrite(IN2, leftB); // control pin IN2 left motor backward
digitalWrite(IN3, rightF); //control pin IN3 right motor forward
digitalWrite(IN4, rightB); //control pin IN4 right motor back
if(speed == 1) motorSpeed = 90; //higher speed when moving forward
else motorSpeed = 80; // or backward than when turning
analogWrite(ENA, motorSpeed); // left motor speed
motorSpeed = motorSpeed*bias;
analogWrite(ENB, motorSpeed); // right motor speed

}

float scan(int angle, String direct) //function to scan distance at angle

{

servo.write(angle); // rotate servo motor
delay(scanTime); // delay between scans

float dist = (sonar.ping median(5)/2.0)*0.0343; //check distance (cm)
distance(direct, dist); // display to distance on OLED
servo.write(90); // rotate servo motor
delay(scanTime); // delay between scans

return dist;

474



CHAPTER 24  ROBOT CAR

void distance (String direct, float dist) //function to display on OLED

{
direct = direct +": ";
oled.clearDisplay(); // clear OLED display
oled.setCursor(0,0); // position cursor at (0, 0)
oled.print(direct); // print text
oled.print(dist, 0); // print number with 0DP
oled.display(); // start display instructions
}

PID Controller

The balancing robot, outlined in the next section, requires a PID controller
to manage the process of reacting to changes in the vertical angle of the
robot by altering the direction and speed of rotation of the DC motors.
A brief description and an example of a PID controller are given.

PID controllers are used in many systems to manage process inputs
and control process outputs, with cruise control in a car being an
example. The PID controller monitors the difference between the required
input (called the setpoint) and the observed input, and uses a feedback
mechanism to change the process output. In the example of a car, the
setpoint is the required speed, the input is the actual speed, and the output
is the amount of petrol or diesel injected into the fuel injection system,
which alters the engine speed and the speed of the car.

The difference between the PID setpoint and observed PID input is
the error. There are three components in a PID output—proportional,
integral, and derivative, which are derived from the current error, the
cumulative error, and the rate of change in the error. The PID output

475



CHAPTER 24  ROBOT CAR

is Kpe + Kit ) e + K;b,, where K, K;and K, are the coefficients of the
proportional, integral and derivative terms for the error, e, the cumulative
error, Y e, and the rate of change in the error, b,, respectively, with ¢ the
time interval between successive PID evaluations. The rate of change

in the error, b,, is calculated as (error - previous error)/t. If the PID setpoint
is constant, then the rate of change in the error is the negative rate of
change in the PID input or (previous input - input)/t, as error is equal to
setpoint - input.

Changing the proportional coefficient, K,, directly changes the PID
output, but results in oscillation of the PID input about the PID setpoint.
If the PID output only consists of the proportional component, then the
mean input is always below the setpoint, as the output is proportional
to the error, which is fixed for a given input. Increasing the integral
coefficient, K, increases the rate at which the PID input reaches the PID
setpoint, but there is a time lag while the integral component accumulates.
A combination of the proportional and integral components results in the
PID input reaching the PID setpoint quickly, with little oscillation about
the PID setpoint. The derivative component prevents the PID output from
changing too quickly.

An example of a PID control system is to maintain constant ambient
light on a light dependent resistor (LDR) by controlling the brightness of
an LED facing the LDR (see Figure 24-2 and Table 24-2). If the reading of
the incident light on the LDR (input) differs from the required amount
(setpoint), then the LED brightness (output) is updated.

476



LDR resistor

4.7kQ

LED resistor

220Q

-ﬂ"ﬂ"-.-—n-nf—-

CHAPTER 24

ROBOT CAR

s 55888 8 88 8h
s 2 5 8 8 8 8 8 8 8h

fritzing

Figure 24-2. PID controller with LDR and LED

Table 24-2. PID Controller with LDR and LED

Component Connect to and to

potentiometers GND Arduino GND

Kp, Ki potentiometer signals  Arduino pin A4, A5

potentiometers VCC Arduino 5V

LDR top Arduino 5V

LDR bottom 4.7kQ resistor Arduino GND

LDR bottom Arduino pin A0

LED long leg Arduino PWM pin 11

LED short leg 2202 resistor Arduino GND

477



CHAPTER 24  ROBOT CAR

The PID library by Brett Beauregard is recommended for PID
controller sketches, when the PID setpoint is constant. The PID library
is available within the Arduino IDE and is installed using installation
method 3, as outlined in Chapter 3.

The sketch (see Listing 24-2) uses the voltage output from
potentiometers to alter the coefficients K, and K. Note that the PID
coefficients K, K;and K, and the PID variables sefpoint, input and output
must be defined, in a sketch using the PID library, as double rather than
float. The LDR is combined with a 4.7k resistor to form a voltage divider
(see Figure 24-2), with the voltage divider’s output voltage converted to a
digital value, as outlined in Chapter 3.

Increasing the K, coefficient results in increasing the PID input, but when
K, exceeds a threshold, the PID input starts to oscillate. Increasing values of
the K; coefficient reduces the response time of the PID output and the time
taken for the PID input to reach the PID setpoint. Note that the PID setpoint in
Listing 24-2 is constant and that the derivative component, K, is set to zero.

Listing 24-2. PID Controller with LDR and LED

#include <PID vi.h> // include PID library
double Kp=0;
double Ki=0; // PID coefficients

double Kd=0;
double input, output, setpoint; //PID variables

// associate pid with PID_v1 library
PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT);

int PIDtime = 20; // time (ms) between PID evaluations
int LDRpin = Ao; // LDR pin

int KpPin = A4; // Kp potentiometer pin

int KiPin = A5; // Ki potentiometer pin

int LEDpin = 11; // LED on a PWM pin

unsigned long chkTime;

478



CHAPTER 24  ROBOT CAR

void setup()

{
pid.SetMode (AUTOMATIC); // start PID control
pid.SetSampleTime(PIDtime); // constant PID evaluation time interval
setpoint = 500; // constant PID setpoint
chkTime = millis();

}

void loop()
{

if(millis()-chkTime > PIDtime) // new PID evaluation

{
Kp = analogRead(KpPin) *3.0/1023; //Kp (0 to 3) from potentiometer
Ki = analogRead(KiPin) *15.0/1023; //Ki(0 to 15) from potentiometer
input = analogRead(LDRpin); //read LDR value as PID input
pid.SetTunings(Kp, Ki, Kd); //update PID coefficients
pid.Compute(); // evaluate PID
analogWrite(LEDpin, output); //LED brightness is PID output
chkTime = millis(); // reset time to next PID evaluation

PID control with an adjustable setpoint variable and K; coefficient
values requires calculation of the three PID components, given that the
PID library assumes a constant PID setpoint. In Listing 24-3, the voltage
output from potentiometers varies the setpoint and the K; coefficient.

To prevent the integral component from accumulating beyond limits,
known as windup, the integral component is constrained when the new
error term is added to the previous integral and when included in the PID
output calculation, with values of 0 and 255 used in the sketch. The PID
output variable is also constrained between 0 and 255. Given that the K;
coefficient is a variable, the calculation of the integral component error
term incorporates the current K; coefficient rather than multiplying the
sum of the error terms by a constant K; coefficient.

479



CHAPTER 24  ROBOT CAR

Note that in Listing 24-3, the error and derivative coefficients, K, and
K, are defined at the start of the sketch, but can be determined from a
potentiometer output as with the integral coefficient, K;. When using PID
to control the LED brightness, zero values for K, and K, are sulfficient.

Listing 24-3. PID Control with Variable Setpoint

float Kp=0;

float Ki=0; // PID coefficients

float Kd=0;

float input, output, setpoint; // PID variables

int PIDtime = 20; // time (ms) between PID evaluations
int LDRpin = AO; // LDR pin

int setPin = A4; // setpoint potentiometer pin

int KiPin = As5; // Ki potentiometer pin

int LEDpin = 11; // LED on a PWM pin

unsigned long chkTime;
float pTime, error, lastError, integral, derivative;

void setup()

{
pTime = PIDtime/1000.0; //PID evaluation time (s)
chkTime = millis();

}

void loop()
{
if(millis()-chkTime > PIDtime)
{
setpoint = analogRead(setPin); // setpointfrom potentiometer
Ki = analogRead(KiPin) *15.0/1023; //Ki(0 to 15)from potentiometer
input = analogRead(LDRpin); //read LDR value as PID input
error = setpoint-input; // PID error
// constrained PID integral and error
integral = constrain(integral,0,255) + error*Ki*pTime;

480



CHAPTER 24  ROBOT CAR

derivative = (error - lastError)/pTime; //PID derivative
lastError = error; // retain last error

// evaluate PID output
output = Kp*error + constrain(integral,0,255) + Kd*derivative;
output = constrain(output, 0, 255); //constrain PID output
analogWrite(LEDpin, output); //LED brightness is PID output
chkTime = millis(); // reset time to next PID evaluation

Balancing Robot

The balancing robot (see Figure 24-3 and Table 24-3)
uses the Arduino Nano, DC motors, the L298N motor
driver board and the GY-521 module, which includes
an MPU-6050 accelerometer and gyroscope sensor,

as outlined in Chapter 3. Wireless communication of
the PID coefficients transmitted with the nRF24L.01
module, was outlined in Chapter 17. The GY-521
module is positioned low in the balancing robot and on

the same axis as the DC motors; while the Arduino Nano, L298N motor driver
board, and battery are positioned high in the robot to generate an inverted
pendulum. The pitch angle of the robot, detected by the GY-521 module, is the
PID input, the PID setpoint is the angle of the robot when the robot is balanced
and the PID output is the direction and speed of rotation of the DC motors.

481



CHAPTER 24  ROBOT CAR

GY-521

. L298N
. H=Bridge

nRF24L01

fritzing

Figure 24-3. Balancing robot with nRF24L01 and accelerometer

Table 24-3. Balancing Robot with nRF241L01 and Accelerometer

Connect to Arduino Nano pins Connect to
1 VIN 5V rail
RX0 GND GY-521 GND
nRF24L01 GND
RST RST
L298N GND GND 5V GY-521VCC
GY-521 INT D2 A7
D3 A6
D4 A5 GY-521 SCK

(continued)

482



CHAPTER 24  ROBOT CAR

Table 24-3. (continued)

Connect to Arduino Nano pins Connect to
IN4 right motor D5 PWM A4 GY-521 SDA
IN3 right motor D6 PWM A3

nRF24L01 CE D7 A2

nRF24L01 CSN D8 A1

IN2 left motor D9 PWM AO

INT left motor D10 PWM REF

nRF24L01 MOSI D11 3v3 nRF24L01 VCC
nRF24L01 MISO D12 D13 nRF24L01 SCK

Determining PID Coefficients

The three PID components are the error or difference between the PID
setpoint and input for the proportional component, the cumulative sum
of errors for the integral component and the difference between the
current error and previous error for the derivative component. The three
PID components are multiplied by the K, K, and K, PID coefficients to
determine the PID output.

There are several methods for determining optimal values of the PID
coefficients. The Ziegler-Nichols method sets the integral and derivative
coefficients, K; and K, to zero. The proportional coefficient is increased
from zero, reaching a value, K, when the PID input starts to oscillate.
The period of the input oscillation, T, is measured with an oscilloscope.
The PID coefficients—K,, K; and K,— are then set to 0.6K, 1.2K/T and
0.075KT, respectively.

483



CHAPTER 24  ROBOT CAR

Without an oscilloscope, PID coefficients can be determined
empirically using potentiometers to vary values of the K, K;, and K,
coefficients (see Figure 24-4). The integral and derivative coefficients,
K;and K, are set to zero and the value of the proportional coefficient,
K,, is increased from zero until the robot starts to balance. The integral
coefficient, K;, and then the derivative coefficient K, are increased to
improve the stability of the robot. Empirical values of K,, K; and K, are
wirelessly transmitted with an nRF24L.01 module to a receiving nRF241L01
module connected to the Arduino Nano attached to the balancing robot.
An OLED display connected to the transmitting Arduino Nano displays
values of the PID coefficients K,,, K; and K.

nRF24L01

fritzing

Figure 24-4. nRF24101 transmit K,, K, and K, values

484



CHAPTER 24  ROBOT CAR

Table 24-4. nRF24L01 Transmit K,, K, and K, Values

Connect to Arduino Nano pins  Connect to
X1 VIN  5Vrail
RX0 GND OLED GND
nRF24L01 GND
RST RST
potentiometers GND GND 5V potentiometers VCC
D2 A7 Kq4 potentiometer signal
D3 A6 K; potentiometer signal
D4 A5 OLED SCK
D5 A4 OLED SDA
D6 A3 K, potentiometer signal
nRF24L01 CE D7 A2
nRF24L01 CSN D8 A1
D9 A0
D10 REF
nRF24L01 MOSI D11 3V3  OLEDVCC
nRF24L01 VCC
nRF24L01 MISO D12 D13 nRF24L01 SCK

Circular Buffer

Noise from a potentiometer results in variation in the transmitted PID

coefficients, which can be reduced by ignoring values that differ from

the current mean value by set amount. The circular buffer holds several

potentiometer values from which the mean value is calculated, with the

size of the circular buffer fixed. The circular buffer replaces the “oldest”

485



CHAPTER 24  ROBOT CAR

value with the current value, if the current value differs sufficiently from
the mean value. In the sketch (see Listing 24-4), the circular buffer holds

10 (nVal) values and ignores values that differ from the mean by less than

5 (minVal). For example, if the buffer size is three and the sequence of
potentiometer values is 5, 5, 5, 4, 11, 14, then the mean value is 5 for the
first four values, as the value of 4 is ignored since it differs by only one from
the mean. With value 11, the new mean value is 7 and the buffer consists of
(5, 5, 11), and with the value 14, the new mean is 10 and the buffer consists
of (5,11, 14).

In Listing 24-4, circular buffers reduce the noise variation on three
potentiometers used to define the K,, K;and K, coefficients, with each
buffer containing 10 (nVal) values and a minimum deviation of at least
5 (minVal) before a new value is included in the circular buffer. The
getKvalues() function updates the circular buffer for each potentiometer
with the K, K, and K, coefficients constrained to values less than 40,

10, and 1, respectively. The coefficient values are displayed on the OLED
display and then transmitted to the nRF24L01 receiver module. In
practice, the robot was balanced with PID K,, K, and K, coefficients of 32,
2.5, and 0.2 respectively, but the coefficient values are dependent on the
specific robot, and a wide range of values should be examined.

Listing 24-4. Determining PID Coefficients with a Circular Buffer

#include <SPI.h> // include SPI library
#include <RF24.h> // include RF24 library
RF24 radio(7, 8); // associate radio with RF24 library
byte addresses[][6] = {"12"};
typedef struct // define a structure
{
float Kp, Ki, Kd; // PID coefficients

} dataStruct;
dataStruct data;
#include <Adafruit GFX.h> // include Adafruit GFX library

486



#include <Adafruit SSD1306.h>

Adafruit SSD1306 oled(-1);

int Kpins[3] = {A3, A6, A7};
const int nVal = 10;
val[3][nVal];

int
int
int
int
int
int

void setup()

{

}

value;

Sum[] = {0) 0, 0};

n[] = {O) 0, 0}3
minVal = 5;

K[31;

radio.begin();

CHAPTER 24  ROBOT CAR

// include Adafruit SSD1306 library

// associate oled with Adafruit_SSD1306 library

// Kp, Ki and Kd potentiometer pins
// number of values in circular buffer
// circular buffer for three variables

// sum of circular buffer values
// index of current values in buffer
// minimum deviation from mean

// mean values of circular buffer

// initialise radio

radio.openhWritingPipe(addresses[0]); //open transmitting pipe
oled.begin(SSD1306 SWITCHCAPVCC, 0x3C); // OLED display and I2C address

oled.clearDisplay();
oled.setTextColor (WHITE);
oled.setTextSize(1);
oled.display();

for (int i=0; i<3; i++)

{

}

for (int j=0; j<nVal; j++)

void loop()

{

getKvalues();

data.Kp = K[0] *40.0/1023;
data.Ki = K[1] *10.0/1023;
data.Kd = K[2] *1.0/1023;

// clear OLED display
// set font colour
// set font size

// start display instructions

val[i][j] = 0; //setcircular buffer

// values to zero

// function to update circular buffer
// Kp (0 to 40) from potentiometer
// Ki (0 to 10) from potentiometer
// Kd (0 to 1) from potentiometer

487



CHAPTER 24  ROBOT CAR

oled.clearDisplay(); // clear OLED display
oled.setCursor(0,0); // position cursor at (0, 0)
oled.print("Kp: "); // display text and Kp value
oled.println(data.Kp); // followed by a carriage return
oled.print("Ki: "); // display text and Ki value
oled.println(data.Ki);

oled.print("Kd: "); // display text and Kd value
oled.print(data.Kd);

oled.display(); // start display instructions

radio.write(&data, sizeof(data)); //transmit Kp and Kd values
delay(50);

}
void getKvalues() // function to update circular buffer
{
for (int i=0; i<3; i++) // repeat for each PID coefficient
{
value = analogRead(Kpins[i]); // read current potentiometer value
if(value>0)
{

if(abs(value-K[i]) > minval) //potentiometer value differs

{ // sufficiently from mean value
sum[i] = sum[i] - val[i][n[i]]; //subtract "oldest" value from buffer
val[i][n[i]] = value; //replace "oldest" with current value
sum[i] = sum[i] + value; //update circular buffer total

n[i]++; // increment index of current value
if(n[i] > nval-1) n[i] = 0; //when atend of circular buffer
}
}
else // reset circular buffer to zero

488



CHAPTER 24  ROBOT CAR

{ // when potentiometer value is zero
for (int j=0; j<nval; j++) val[i][j] = oO;
sum[i]=0;

}

K[i] = sum[i]/nVal; // mean values of circular buffer

}
}

Quaternion Measurements

Accelerometer measurements provide an estimate of the pitch angle,
as outlined in Chapter 3. The estimated pitch angle can be improved
by combining the accelerometer and gyroscope measurements into
quaternions, which is performed by the Invensense DMP (Digital Motion
Processor) of the MPU-6050 sensor on the GY-521 module. Quaternions
consist of four components, a magnitude and three directional components,
which parameterize the angle of rotation. The quaternion components,
accelerometer and gyroscope measurements are stored by the MPU-6050
sensor in a 10-byte FIFO (first-in, first-out) buffer, when the MPU-6050
sensor interrupt pin is set to HIGH, to indicate that updated positional
measurements are available. Quaternions are outlined in the Appendix.
Estimates of the pitch angle using quaternion components or only
accelerometer measurements were broadly similar, but the latter are
more variable. For example, when the GY-521 module was tilted forward
and backward, the change in estimated pitch angle was smoother using
quaternion components than when using accelerometer measurements
(see Figure 24-5). The accelerometer pitch angles differed from the
quaternion pitch angles between -5° and 9° (see Figure 24-5, secondary
axis). For the balancing robot, noise in the estimated pitch angle
must be minimized, so calculation of the pitch angle from quaternion
measurements is recommended; however, there is an initial lag before the
quaternion components stabilize.

489



CHAPTER 24  ROBOT CAR

90 r 10
70
50
30
10 L

-10

Quaternion pitch angle
(=]
Quaternion - Accelerometer

—(Q-A)pitch
-90 - -10

Figure 24-5. Estimated pitch angle

The MPU6050 and I2Cdev libraries by Jeff Rowberg enable access
to the MPU-6050 sensor’s FIFO buffer, which holds the quaternion
measurements. A .zip file containing the MPU6050 and I2Cdev libraries
can be downloaded from https://github.com/jrowberg/i2cdevlib/.

Extract the MPU6050 and I2Cdev folders from the .zip file and install
the libraries using installation method 2, as described in Chapter 3.

The balancing robot sketch (see Listing 24-5) includes instructions
from the Examples » MPU6050 » MPU6050_DMP6 sketch in the
MPU6050 library to access the quaternion measurements. Prior to use, the
MPU6050 sensor should be calibrated with the Examples » MPU6050 »
IMU _Zero sketch to determine offset values for the gyroscope X, Y, and Z
axes and the accelerometer Z axis. PID K,, K;, and K, coefficients, defined
with potentiometers using circular buffers to reduce noise, are transmitted
with a nRF24L01 module using Listing 24-4 to the receiving nRF24L01
module attached to the balancing robot.

Table 24-5 shows the structure of the FIFO buffer as outlined in the
Arduino » Libraries » MPU6050 » MPU6050_6Axis_MotionApps20.h file.

490


https://github.com/jrowberg/i2cdevlib/

CHAPTER 24  ROBOT CAR

Table 24-5. FIFO Buffer Structure

Quarternion Gyroscope Accelerometer

Value w X y z X y z X y z
Register 0,1 4,5 8,9 12,13 16,17 20,21 24,25 28,26 32,33 36,37

Quaternion values are combined with the following instructions.

gw = ((fifoBuffer[0] << 8) | fifoBuffer[1]);
gx = ((fifoBuffer[4] << 8) | fifoBuffer[5]);
qy = ((fifoBuffer[8] << 8) | fifoBuffer[9]);
qz = ((fifoBuffer[12] << 8) | fifoBuffer[13]);

The symbols <<8 and | indicate that the left-hand value is moved
by 8 positions and added to the right-hand value, as outlined in the
“Accelerometer and Gyroscope” section of Chapter 3.

In the balancing robot sketch (see Listing 24-5), the pitch angle
corresponding to a balanced robot is defined as the PID setpoint and
the pitch angle of the moving robot is defined as the PID input, which is
constrained to have absolute values of less than 25°. Motor speed, which
is the PID output, is constrained to a value of at least 60, otherwise the
motors do not turn sufficiently. The interval between PID evaluations
of 20ms is sufficient to achieve a balancing robot. In practice, PID
coefficients of 32, 2.5, and 0.2 for K, K;, and K, respectively, balanced
arobot, with higher K, values required on carpet surface compared to
wooden flooring.

Listing 24-5 is long, but consists of groups of instructions that have
been used in projects in other Chapters. As usual, the start of the sketch
includes libraries, defines variables and pins associated with the MPU-
6050 accelerometer and gyroscope sensor, the nRF24L01 receiver module,
and the L298N motor driver board. The void setup() function consists
primarily of instructions to access the FIFO buffer of the MPU-6050 sensor,

491



CHAPTER 24  ROBOT CAR

which were derived from the Examples » MPU6050 » MPU6050_DMP6
sketch. The void loop() function consists of two halves, with the first
half receiving the transmitted PID coefficients: K,,, K;, and K, calculating
the pitch angle from the quaternion values and then the PID output,
calculated from the PID error, integral, and derivative components, to
adjust the DC motor speed.

The second half of the void loop() function combines the eight FIFO
buffer values to form the four scaled quaternion values. The motor ()
function sets the DC motor speed on the Arduino Nano PWM pins and the
DMPdataReady() function is an interrupt indicating that data is available
from the MPU-6050 sensor.

Listing 24-5. Balancing Robot

#include <I2Cdev.h> // include I2Cdev library
#include <MPU6050_6Axis_MotionApps20.h> //include MPU6050 library
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO WIRE

#include <Wire.h> // include Wire library
#endif
MPU6050 mpu; // associate mpu with MPU6050 library
uint8 t mpulntStatus; // MPU-6050 interrupt status
volatile bool mpuInterrupt = false; //if MPU-6050 interruptis HIGH
bool DMPinit = false; // DMP initialisation status
uint8 t DMPstatus; // device status (0 = success, !0 = error)
uint16_t fifoPacket; // DMP packet size (default 42 bytes)
uint16_t fifoCount; // number of bytes in FIFO
uint8 t fifoBuffer[64]; // FIFO storage buffer
int I2Caddress = 0x68; // 12C address of MPU-6050
#include <SPI.h> // include SPI library
#include <RF24.h> // include RF24 library
RF24 radio(7, 8); // associate radio with RF24 library

byte addresses[ ][6] = {"12"};

492



CHAPTER 24  ROBOT CAR

typedef struct // define a structure
{
float K1, K2, K3; // transmitted PID coefficients
} dataStruct;
dataStruct data;
float Kp = 0, Ki = 0, Kd = 0; //PID coefficients

int pidTime = 20; // interval between PID evaluations (ms)
unsigned long chkTime = 0;

int IN1 = 10; // left wheel forward and backward pins
int IN2 = 9;

int IN3 = 6; // right wheel forward and backward pins
int IN4 = 5;

int inputlLimit = 25; // limit on pitch angle (-25, 25)

int outMin = 60; // minimum output to turn on motors

int LEDpin = 3;
float qw = 0, gx = 0, qy = 0, qz = 0, pitch; //quaternion values
// from MPU-6050
float integral = 0;
float input, output, setpoint, error, lastError, derivative, pTime,
sumsquare;
int mSpeed;

void setup()

{

Serial.begin(115200); // set baud rate to 115200

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO WIRE
Wire.begin(); // initialise 12C
Wire.setClock(400000); // set12C clock speed to 400kHz

#elif I2CDEV_IMPLEMENTATION == I2CDEV BUILTIN FASTWIRE
Fastwire::setup(400, true); // library for fast 12C access

#endif

mpu.initialize(); // initialise mpu

DMPstatus = mpu.dmpInitialize(); //set DMPstatus variable

493



CHAPTER 24  ROBOT CAR

mpu. setXGyroOffset(10);
mpu.setYGyroOffset(-20); // gyro X, Y and Z and accelZ offsets
mpu.setZGyroOffset(100); // from IMU_Zero in MPU6050 library
mpu.setZAccelOffset(1730);
if (DMPstatus == 0) // DMP (Digital Motion Processor)initialised
{
mpu.setDMPEnabled(true); // start DMP
attachInterrupt(0, DMPdataReady, RISING); //interrupton GY-521 module
mpuIntStatus = mpu.getIntStatus();
DMPinit = true; // DMP initialised
fifoPacket = mpu.dmpGetFIFOPacketSize(); //DMP packet size
}

else Serial.print("DMP initialization failed");

radio.begin(); // initialise radio
radio.openReadingPipe(0, addresses[0]); // open reading pipe
radio.startListening();
motor(0, 0, 0, 0); // initialise motor to zero
pinMode(LEDpin, OUTPUT); // define LED pin as OUTPUT
setpoint = 2; // setpoint angle with robot balanced
integral = 0;
pTime = pidTime/1000.0; // PID evaluation time (s)
delay(1000);
}
void loop()
{ // MPUG6050 data available
while (!mpuInterrupt &3 fifoCount < fifoPacket)
{
if(millis()-chkTime > pidTime) //PID evaluation
{
if(radio.available()) // transmitted data available
{

radio.read(&data,sizeof(data));

494



CHAPTER 24  ROBOT CAR

Kp = data.K1; // update PID coefficients
Ki = data.K2;
Kd = data.K3; // flash LED received transmission
digitalWrite(LEDpin, !digitalRead(LEDpin));
}
pitch = -asin(2.0*(gx*qz-qw*qy))*180/PI; // constrain pitch angle
input = constrain(-pitch, -inputlLimit, inputlLimit);

error = setpoint - input; //PID error and integral components
integral = constrain(integral,-255,255) + error*Ki*pTime;
derivative = (error - lastError)/pTime; //PID derivative component
lastError = error; // update last error

// evaluate PID output
output=Kp*error + constrain(integral,-255,255) + Kd*derivative;
mSpeed = constrain(output, -255,255); //limit motor speed
if(mSpeed > outMin) motor(mSpeed, 0, mSpeed, 0);
else if(mSpeed < -outMin) motor(o, -mSpeed, 0, -mSpeed);

else motor(o, 0, 0, 0); // output low, zero motor speed
chkTime=millis();
}
}
fifoCount = mpu.getFIFOCount(); // get current FIFO count
mpuInterrupt = false; // reset interrupt flag

mpuIntStatus = mpu.getIntStatus(); //check for overflow
// when getIntStatus fifth bit = 1
if (bitRead(mpuIntStatus,4) == 1 || fifoCount == 1024)
{
mpu.resetFIFO(); // reset FIFO
Serial.println("FIFO overflow");
}
else if(bitRead(mpuIntStatus,1) == 1) //checkif DMP data ready
{ // getIntStatus second bit = 1
while (fifoCount < fifoPacket) fifoCount = mpu.getFIFOCount();
mpu.getFIFOBytes(fifoBuffer, fifoPacket); //read data packet from FIFO

495



CHAPTER 24  ROBOT CAR

fifoCount -= fifoPacket; // update FIFO byte number
gw = ((fifoBuffer[o] << 8) | fifoBuffer[1]);
gx = ((fifoBuffer[4] << 8) | fifoBuffer[5]); //quaternion values
qy = ((fifoBuffer[8] << 8) | fifoBuffer[9]);
qz = ((fifoBuffer[12] << 8) | fifoBuffer[13]);
qw = qw/16384.0; // divide quaternion by 2!
gx = qx/16384.0;
qy = qy/16384.0;
gz = qz/16384.0;
}
}
void motor(int leftF, int leftB, int rightF ,int rightB)
{ // control motors

float bias = 1.0;
analogrite(IN1, leftF*bias); // bias left or right motor speed
analogWrite(IN2, leftB*bias); //asrequired
analoghrite(IN3, rightF);
analoghrite(IN4, rightB);

}

void DMPdataReady() // interrupt from MPU-6050
{

mpulnterrupt = true;

}

Summary

An obstacle-avoiding robot car used an ultrasonic distance sensor
mounted on a servo motor to detect obstacles, with the distance-
to-obstacle information provided on an OLED display. Use of a PID
controller was illustrated by maintaining constant ambient light on a
light dependent resistor through controlling the brightness of an adjacent
LED. A circular buffer was described to reduce noise from potentiometer

496



CHAPTER 24  ROBOT CAR

output. Quaternion measurement system provided more stable readings

of the pitch angle from the accelerometer and gyroscope module than

the accelerometer readings alone. A balancing robot was built with the

accelerometer and gyroscope module controlling the DC motors through

a PID controller with a circular buffer to reduce noise on potentiometer

values used to derive the PID coefficients.

Components List

Arduino Uno and breadboard

Arduino Nano and breadboard

DC motors: 2x

Motor driver board: L298N

Battery: 9V

Ultrasonic distance sensor: HC-SR04
Servo motor: SG90

OLED display: 128x32 pixels

RGB LED or module

Potentiometers: 3x 10k€2

LED

Light dependent resistor (or photoresistor)
Resistor: 220€2 and 4.7k

Wireless transceiver module: 2x nRF24L01

Accelerometer and gyroscope module: GY-521

497



CHAPTER 25

Wi-Fi Communication

Wi-Fi technology allows communication
between a device and a wireless local area
network (WLAN). Devices such as personal

computers and printers, digital cameras
and mobile phones can connect to a Wi-Fi access point over a distance
of 20m indoors with greater distances outdoors. Like Bluetooth (see
Chapter 16) and wireless (see Chapter 17) communication, Wi-Fi
operates at 2.4GHz.

Some Arduino Wi-Fi shields that connect to the Arduino Uno are
based on the ESP8266 Wi-Fi microchip. The NodeMCU ESP8266 based
microcontroller is more powerful than the Arduino Uno and can be
programmed using the Arduino IDE. The NodeMCU ESP8266 is used for
Wi-Fi communication in this chapter. The WeMos D1 mini is based on the
ESP8266 microcontroller. It has Wi-Fi communication, and it can be used
instead of the NodeMCU ESP8266.

NodeMCU ESP8266

The NodeMCU ESP8266 operates at 3.3V and is powered through a
micro USB connection, which is also used to upload instructions and
communicate with a computer or laptop. The micro USB cable can be
connected to 5V, given the 3.3V voltage regulator, and there are three

© Neil Cameron 2019 499
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5_25



CHAPTER 25  WI-FI COMMUNICATION

3.3V output pins, a voltage input (5V) pin and four ground pins for
connecting to other devices (see Figure 25-1). The general-purpose
input/output (GPIO) pins are used for transmitting and receiving
serial data (GPIO 1 and 3, respectively) with 12C (GPIO 4 and 5) and
SPI (GPIO 12 to 15) communication. There are four PWM pins (GPIO
4,12, 14, and 15) and one analog-to-digital converter pin (A0). There
are two LEDs: one beside pin D0 and the other beside the micro-USB
connection on pins GPIO 2 and 16, respectively, with the latter equal to
LED_BUILTIN and active LOW. The Reset button is used to restart the
microcontroller. The GPIO pins are not 5V tolerant and the maximum
current supply of a pin is 12maA.

USB to serial

GPIO 5
3.3V output 4 Voltage input 5V
Ground Ground

1 Transmit Reset
3 Receive  [HRRRRIEEEEREIRE LED on GPIO16

15 (SPI)SS 3.3V output

13 (SPI) MOSI Ground

12  (SPI)MISO [

14 (SPI) SCK 3.3V voltage
Ground regulator
3.3V output

2

0

4 (12C) SDA 12} Reserved power
5 (I2C)SCK 4€Y Reserved ground
16 Built-in LED =% Analog to digital

converter

LED on GPIO2

Figure 25-1. NodeMCU ESP8266

500



CHAPTER 25  WI-FI COMMUNICATION

Several steps are required prior to running sketches on the NodeMCU
ESP8266. First, the CP2012 Virtual COM Port (VCP) USB to UART driver is
installed on the computer.

1.

Download the VCPzip file from www.silabs.com/
products/development-tools/software/usb-to-
uart-bridge-vcp-drivers.

Extract the CP210x Universal Windows Driver folder.

Double-click the CP210x VCP Installer using either
the x64 or x86 version for 64-bit or 32-bit operating
systems, respectively.

To determine if a computer has a 32-bit or a 64-bit
operating system, select Control Panel » System and
Security » System. The system type is displayed.

Go to github.com/esp8266/Arduino.

In the Installing with Boards Manager section,
copy the http://arduino.esp8266.com/stable/
package esp8266com_index.json link.

Open the Arduino IDE with a new sketch.
Select File » Preferences.

Paste the link into the Additional Boards Manager
URLs box and click OK.

The ESP8266 libraries are installed in the Arduino IDE.

1.

2.

Select Tools » Board » Boards Manager.

Enter 8266 in Filter to display esp8266 by ESP8266
Community.

Click Install.

501


http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://github.com/esp8266/Arduino

CHAPTER 25  WI-FI COMMUNICATION

4. Connect the NodeMCU ESP8266 to the computer or
laptop, but do not use a USB charging cable.

5. In Tools » Board, select NodeMCU 1.0 (ESP-12E
Module).

6. In Tools » CPU Frequency, select 160 MHz.

7. In Tools » Port, choose the appropriate COM
channel.

8. The NodeMCU ESP8266 setup is verified by running
the blink sketch, available in the Arduino IDE under
File » Examples » ESP8266.

In the Arduino IDE, a pin can be referred to by the GPIO pin number or
by D#, such as int LEDpin = 2 orint LEDpin = D4.

WeMos D1 Mini

WeMos D1 mini development board is based on the ESP-8266EX
microcontroller, and has Wi-Fi functionality (see Figure 25-2). The
WeMos D1 mini operates at 3.3V and is powered through the micro USB
connection. The micro USB cable can be connected to 5V, given the
3.3V voltage regulator, and there is a 3.3V output pin, a 5V output pin
and a ground pin for connecting to other devices. There is one analog-
to-digital converter pin (A0), SPI (GPIO 12 to 15) and I2C (GPIO 4 and 5)
communication, and nine digital input pins, which are all PWM except
GPIO 16. The built-in LED is on pin D4 or GPIO 2 and is active LOW.
The Reset button is used to restart the microcontroller. The GPIO pins
are not 5V tolerant and the maximum current supply of a pin is 12mA.

502



CHAPTER 25  WI-FI COMMUNICATION

Reset 1 Transmit
A0 ADC 3 Receive
16 5 (12C) SCL
14 (SPI) SCK 4 (I2C) SDA
12 (SPI) MISO 0
13 (SPI) MOSI 2 Built-in LED
15 (SPI) SS Ground

3.3V output (g8 5V output

@
@ uEnos.cc

s U218 o

Figure 25-2. WeMos D1 mini

The CH340G USB to UART driver for the WeMos Di mini development
board has to be installed.

1.

2.

6.

7.

Go towiki.wemos.cc/downloads.
Select CH340G Driver » Windows.
Save the ch341ser_win.zip file on the desktop.

Open the .zip file and move the CH341SER
application to the desktop.

Right-click the CH341SER application.
Select Run as administrator and install the driver.

Restart the computer to install the driver.

The ESP8266 libraries have to be installed, as outlined in the
NodeMCU ESP8266 section.

1.

2.

3.

In the Arduino IDE, from Tools » Board, select
LOLIN (WEMOS) D1 R2 & mini.

In Tools » CPU Frequency, select 160 MHz.

In Tools » Port, select the relevant port.

503


http://wiki.wemos.cc/downloads

CHAPTER 25  WI-FI COMMUNICATION

Wi-Fi and Web Server

A series of sketches illustrates communicating with a Wi-Fi network,
establishing a web server and managing HTTP (Hypertext Transfer
Protocol) requests. The first sketch (see Listing 25-1) connects to a Wi-Fi
network and updates a webpage. The Wi-Fi network SSID (Service Set
Identifier) and password are required to access the Wi-Fi network. The
SSID is the name of the local wireless network and both the SSID and
password are generally located on the base of the router. The default HTTP
COM port is 80 and the ESP8266WebServer server instruction is sufficient,
rather than ESP8266WebServer server(80). While waiting for the Wi-Fi
connection, the sketch uses a delay of 500ms. When the Wi-Fi connection
is established, the IP (Internet Protocol) address of the Wi-Fi network is
displayed on the serial monitor.

When the IP address is entered to a web browser, such as Mozilla
Firefox, the server.on("/", message) instruction initiates the message()
function, which sends an HTTP status code, the content type and the
content to the web browser. Note that in the server.on() instruction, the
message() function does not have brackets, as the message() function
does not return a variable. In the sketch, the status code 200 indicates a
successful HTTP request by the server, which is that a valid URL (Uniform
Resource Locator, or web address) exists and the content of the plain text
string msgis displayed on the webpage. The status code 404 indicates that
server could not find the requested URL.

Listing 25-1. Connect to Wi-Fi Network and Update Webpage

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network
#include <ESP8266WebServer.h> //library for webserver functionality
ESP8266WebServer server; // declare webserver

char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid
char* password = "xxxx"; // change xxxx to your Wi-Fi password

504



CHAPTER 25  WI-FI COMMUNICATION

void setup()

{
Serial.begin(115200); // define Serial output at 115200 baud
WiFi.begin(ssid, password); //initialise Wi-Fi
while (WiFi.status() != WL CONNECTED) delay(500); //wait for Wi-Fi connection
Serial.print("IP address: ");
Serial.println(WiFi.localIP()); //displayIP address of Wi-Fi network
server.on("/",message); //message function when webpage loaded

server.begin(); // initialise server
}
void message() // function for main webpage
{

String msg = "webserver connected"; //define msgas string
server.send (200, "text/plain",msg); //send response with plain text

}

void loop()
{

server.handleClient(); //manage incoming HTTP requests

}

The second sketch builds on Listing 25-1, by turning on or off the built-
in LED and a second LED when the webpage is reloaded and displays the
status of the LEDs on the webpage (see Figure 25-3).

Three changes are required to Listing 25-1. At the start of the sketch,
define the LED pins by including the following instructions.

int LEDpin = 16; // built-in LED on GPIO 16
int LED2pin = D8; // second LED on pin D8 or GPIO 15

Within the void setup() function, add the following instructions.

server.on("/LED", LED); // turn LED on or off when website loads
pinMode(LEDpin, OUTPUT);  //built-in LED pin as output
pinMode(LED2pin, OUTPUT); //second LED pin as output

505



CHAPTER 25  WI-FI COMMUNICATION

Include the instructions (see Listing 25-2) for the void LED() function,
noting that GPIO pin 16 is active LOW.

Listing 25-2. void LED() Function

void LED()

{
digitalWrite(LEDpin, !digitalRead(LEDpin)); //turn built-in LED on or off

digitalWrite(LED2pin, !digitalRead(LEDpin)); //turn LED2 on or off
String msg; // define msg as string

if (digitalRead(LEDpin) == HIGH) msg = "LEDs off"; // GPIO16 active LOW
else msg = "LEDs on";

server.send(200, "text/plain”, msg); //send response in plain text

Inclusion of the two LEDs requires the two LED pin definition
instructions at the start of the updated sketch, the two pinMode()
instructions in the void setup() function and the void LED() function.
The purpose of the new server.on("/LED", LED) instruction added in
the void setup() function is to call the void LED() function when the
webpage IP address/LED is loaded.

For example, if the IP address of the Wi-Fi network is 192.168.1.3,
then reloading the webpage with IP address 192.168.1.3/LED results in
both the built-in LED and the second LED being turned on or off and the
corresponding LEDs on or LED:s off message is displayed on the webpage.
Note that IP addresses are case sensitive. The GPIO pin 16 is active LOW,
while pin D8 or GPIO pin 15 is active HIGH, so the state of the pin for the
second LED is the opposite state for the built-in LED. If the instruction for
LED2isdigitalWrite(LED2pin, !digitalRead(LED2pin)), then the two
LEDs are not on at the same time.

506



CHAPTER 25  WI-FI COMMUNICATION

The third sketch (see Listing 25-3) illustrates entering information
by a URL request string to instruct the server to display particular
sensor readings on the webpage. The BMP280 sensor can measure
temperature, pressure or predict altitude. One of the three
measurements is made and displayed on the webpage through a
URL request. If the IP address of the Wi-Fi network is 192.168.1.3,
then loading the webpage with address 192.168.1.3/BMP?sensor=T or
192.168.1.3/BMP?sensor=P or 192.168.1.3/BMP?sensor=A results in
temperature, pressure, or predicted altitude displayed on the webpage.
In the sketch, the String sensor = server.arg("sensor") instruction
searches for the sensor string in the IP address and the subsequent
string is parsed, which is either "T" or "P" or "A", corresponding to the
temperature, pressure, or predicted altitude. Note the ? character in the
address, which separates the URL (192.168.1.3/BMP) from the search
parameter (sensor) and its value ("T" or "P" or "A").

The BMP280 sensor was outlined in Chapter 4 and as the
NodeMCU ESP8266 operates on 3.3V, then the logic level converter
used in Chapter 4 is not required (see Figure 25-3 and Table 25-1).

The NodeMCU ESP8266 and other components in the schematic can
require more power than supplied through the USB computer or laptop
output. A DC-DC step-down (buck) converter set to 3.8V and 1A output
can be used as an external power source. The default I12C address of the
BMP280 module is 0x77, but as the SDO pin is pulled to GND, the 12C
address is 0x76.

507



CHAPTER 25  WI-FI COMMUNICATION

—l—.

IéDR resistor  + o CHHHOHHEY 1 g
7 1 S @e): = i
LED resistors > @,
220Q F@ ;-
1D

ARAAAAAA

power source

fritzing

Figure 25-3. ESP8266 with LED, LDR and BMP820 sensor

508

Table 25-1. ESP8266 with LED, LDR, and BMP820 Sensor

Component Connect to and to
BMP280 VcC ESP8266 3V3

BMP280 GND ESP8266 GND GND rail
BMP280 SDI ESP8266 pin D2

BMP280 SCK ESP8266 pin D1

BMP280 SDO GND ralil

LDR left ESP8266 pin A0

LDR left 4.7kQ resistor GND rail
LDR right ESP8266 3V3

LED long legs ESP8266 pin D7, D8

LED short legs 22042 resistor GND rail




CHAPTER 25  WI-FI COMMUNICATION

Listing 25-3. ESP8266 with LED, LDR, and BMP820 Sensor

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network
#include <ESP8266WebServer.h> //library for webserver functionality
ESP8266WebServer server; //associate server with ESP8266WebServer library
char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid

char* password = "xxxx"; //change xxxx to your Wi-Fi password
#include <Wire.h> // include Wire library

#include <Adafruit_Sensor.h> // include Unified Sensor library
#include <Adafruit_BMP280.h> // include BMP280 library
Adafruit BMP280 bmp;  //associate bmp with Adafruit BMP280 library
int BMPaddress = 0x76; //I2C address of BMP280

float reading;

String letter, msg;

void setup()

{
Serial.begin(115200); // define Serial output at 115200 baud
WiFi.begin(ssid, password); //initialise Wi-Fi
while (WiFi.status() != WL_CONNECTED) delay(500); //wait for Wi-Fi

// connection

Serial.print("IP address: ");
Serial.println(WiFi.localIP()); //display IP address of Wi-Fi network
server.on("/BMP", BMP); //display temperature, pressure or altitude

server.begin(); // initialise server
bmp.begin(BMPaddress); // initialise BMP280 sensor
}
void BMP() // function for /BMP webpage
{ //look for string "sensor” in URL and value T, P or A

letter = server.arg("sensor"); //T entered on browser, read temperature

509



CHAPTER 25  WI-FI COMMUNICATION

if(letter == "T") reading = bmp.readTemperature();

// P entered on browser, read pressure

else if(letter == "P") reading = bmp.readPressure()/100.0;
else if(letter == "A") // A entered on browser, read altitude
{

reading = 10.0 + bmp.readPressure()/100.0; //assumed sea level pressure
reading = bmp.readAltitude(reading); //predicted altitude

}

msg = letter +": "+ String(reading); //string"T" or "P" or "A" and reading
server.send(200, "text/plain”, msg); //activated by sensor=T, P or A

}

void loop()
{

server.handleClient();

}

Note that in each of the sketches (see Listing 25-1 and 25-3), the void
loop() function contains only the server.handleClient() instruction and
instructions for each webpage are included in the separate message(), LED(),
and BMP () functions. In earlier chapters, variables were declared at the start of
the sketch, but to emphasize that all instructions for a webpage are included in
a function, the required variables are declared within the each function.

Wi-Fi and HTML

Listings 25-1, 25-2, and 25-3 display plain text on the webpage, as defined
by the server.send(200, "text/plain", msg) instruction, where msgis
a string containing the text to display. The server.send() instruction can
also provide HTML (Hyper Text Markup Language) for building webpages.
HTML is outside the scope of the text, but waw.w3schools.com

is recommended for information on HTML and CSS (Cascading Style
Sheets), which are used to build and define the style of webpages.

510


http://www.w3schools.com

CHAPTER 25  WI-FI COMMUNICATION

Briefly, an HTML page consists of a head section, where the webpage
title and styles are defined, and a body section, which contains the
webpage content. The sections are bracketed with <head> </head> and
<body> </body>. Style defines font types and sizes, headers, spacing, and
so forth, and is bracketed by <style> </style>. A specific item within a
webpage can be separately formatted and bracketed by <span> </span>.

HTML code for the webpage can be included in the main sketch, but it can
also be included as an additional file; for example, htmlCode.h, which makes
both the main sketch and HTML code for the webpage easier to interpret. The
additional file is created in the Arduino IDE by selecting the triangle below
the serial monitor button, on the right-hand side of the IDE, and choosing
New Tab from the drop-down menu. New Tab should be titled htmlCode.h.

The htmlCode.h file is accessed by the main sketch, with the following

instructions.

char* pageCode = // three lines to include character pointer
#include "htmlCode.h" // html code for webpage

5 // line only includes a semi-colon

pageCode is a pointer to the memory address of the HTML code, which
is implemented with the server.send (200, "text/html", pageCode)
instruction.

For example, Listing 25-4 includes the HTML code for a webpage as a
string literal, which consists of the HTML code bracketed by R" (and )",
noting the double apostrophes before and after the single brackets. The
string literal must only contain the HTML code without comments. The
webpage consists of two buttons to control an LED, with the buttons both
named LED, but with values of ON and OFF.

511



CHAPTER 25  WI-FI COMMUNICATION

Listing 25-4. HTML Code for Webpage As String Literal

R"(

<!DOCTYPE html>

<html>

<head>

<title>Arduino Applied</title>

<style> body {font-family: Arial}

.button {padding: 15px 15px; font-size: 20px}
.button:focus {background-color: lime}
</style>

</head>

<body>

<h1>Arduino Applied</h1>

<span style="font-size: 20px'>LED</span>
<form action="/"' method="'post'>

<input type='submit' class='button' name='LED' value='ON'>
<span class="checkmark'></span>&emsp;

<input type="submit' class="button' name='LED' value='OFF'}>
<span class="checkmark'></span>

</form>

</body>

</html>

X

When a button is selected on the webpage, as detected by the server.
hasArg() instruction, the value of the selected button is obtained as a URL
request by the server.arg() instruction, as used in Listing 25-3, and the
LED is turned on or off (see Listing 25-5). Note that the instruction server.
send(200, "text/html", pageCode) is sending HTML code and not plain
text, as in Listings 25-1, 25-2, and 25-3.

512



CHAPTER 25  WI-FI COMMUNICATION

Listing 25-5. Control an LED with a Webpage Button

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network
#include <ESP8266WebServer.h> //library for webserver functionality
ESP8266WebServer server; // associate server with ESP8266WebServer library

char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid
char* password = "xxxx"; // change xxxx to your Wi-Fi password
int LEDpin = D8; // LED pin D8 or GPIO 15

String LEDvalue = "OFF"; // default value

char* pageCode = // three lines to include

#include "htmlCode.h" //html code for webpage without comments

H // line only includes a semi-colon

void setup()

{
Serial.begin(115200); // define Serial output at 115200 baud
WiFi.begin(ssid, password); //initialise Wi-Fi
while (WiFi.status() != WL_CONNECTED) delay(500); //wait for Wi-Fi

// connection

Serial.print("IP address: ");
Serial.println(WiFi.localIP()); //display IP address of Wi-Fi network
pinMode(LEDpin, OUTPUT); // LED pin as output
server.on("/", webpage); //runwebpage function as webpage loaded
server.begin(); // initialise server

}

void webpage() // function to collect data for webpage

{

button(); // obtain LED button status
server.send (200, "text/html", pageCode); //publish webpage
}

513



CHAPTER 25  WI-FI COMMUNICATION

void button() // function to obtain LED button status

{ // read LED button state
if (server.hasArg("LED")) LEDvalue = server.arg("LED");
if (LEDvalue == "ON") digitalWrite(LEDpin, HIGH); //turn LED on or off
else digitalWrite(LEDpin, LOW);

delay(1000); // delay for 1s to retain button colour
}
void loop()
{
server.handleClient();
}

If the HTML code for the webpage does not include any variables,
then the HTML code can be incorporated as a string literal, as shown in
Listings 25-4 and 25-5. However, if a variable is included in the HTML
code, then the HTML code must be included in the main sketch.

In Listing 25-6, the webpage consists of a list of time information, a
list of BMP280 sensor data and buttons to control an LED. Date and time
information is obtained from the Network Time Protocol (NTP) service
with information provided by a local server pool. Details of server pools are
available at waw.pool.ntp.org and the IP address of the local server pool
is required in the sketch. The NTP data is accessed using the NTPtimeESP
library by Andreas Spiess. A .zip file containing the library is available at
github.com/SensorsIot/NTPtimeESP. The NTPtimeESP library is installed
using library installation method 1 or 2, as described in Chapter 3.

The two parameters of the NTP.getNTPtime() instruction are time
zone and 0 or 1 for European Summer Time. In the two string arrays,
months and weekdays, the first element, [0], is blank so that the months|[ ]
and weekday[ ] variables directly refer to elements in the corresponding
array, such as "May" is equal to months[5], which is the sixth element
of the array. Date and time information are converted into strings in
the format dd mmm yy and hh:mm:ss, respectively, for inclusion in the
HTML code.

514


http://www.pool.ntp.org
http://github.com/SensorsIot/NTPtimeESP

CHAPTER 25  WI-FI COMMUNICATION

The HTML code for the webpage is contained in the string page using
the String buildPage() function. Note that the buildPage() function
returns a string, so the function is defined as String buildPage(), in
contrast to void webpage() that does not return a variable. In the String
buildPage() function, the string page is incremented, line by line, to
include the HTML code for the webpage and to incorporate the date and
time strings with the BMP280 sensor measurements. Each increment
of HTML code is bracketed by double apostrophes and followed by
a semicolon. For example, page += "<style> body {font-family:
Arial}";. The date and time information strings and the strings for BMP280
sensor measurements are not bracketed by double apostrophes, because
otherwise the webpage would display the name of the string or the name of
the measurement, rather than the value of the string or measurement.

The webpage includes time and sensor information grouped into two
lists and in the HTML code the lists are bracketed with <ul> </ul> and
items within a list are bracketed by <1i> </1i>.

The sketch (see Listing 25-6) is structured to include libraries and
define variables in the first section, the void setup() function connects
to the local Wi-Fi network and calls the webpage () function, when the
webpage of the local Wi-Fi network is loaded. The webpage () function
calls the button() function to update the LED state, updates the BMP280
measurements, calls the getTime() function to obtain date and time
information from the NTP service, and then the webpage is updated by the
String buildPage() function.

If the IP address of the Wi-Fi network is 192.168.1.3, then the
webpage loaded is titled Arduino Applied. The date, time, and BMP280
measurements are displayed, and updated every two seconds. Clicking
the ON or OFF LED button turns on or off the LED, connected to the
NodeMCU ESP8266 on GPIO pin D8. The NodeMCU ESP8266 does not
need to be connected to a computer or laptop, as the information for
the webpage is forwarded to the web browser on the computer or laptop
displaying the webpage by using the local Wi-Fi network.

515



CHAPTER 25  WI-FI COMMUNICATION

Listing 25-6. HTML Webpage

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network
#include <ESP8266WebServer.h> //library for webserver functionality
ESP8266WebServer server; // associate server with ESP8266WebServer library

char* ssid = "xxxx"; // change xxxx to your Wi-Fi ssid
char* password = "xxxx"; // change xxxx to your Wi-Fi password
#include <Wire.h> // Wire library

#include <Adafruit_Sensor.h> //Unified Sensor library
#include <Adafruit BMP280.h> //BMP280 library
Adafruit_BMP280 bmp; // associate bmp with Adafruit_ BMP280 library

int BMPaddress = 0x76; // 12C address of BMP280

int LEDpin = D8; // LED pin GPIO 15 defined as D8
String LEDvalue = "OFF";

#include <NTPtimeESP.h> // include NTPtime library

// associate NTP with NTPtime library
NTPtime NTP("uk.pool.ntp.org"); // UK server pool for NTPtime
String stringTime, stringDate, stringDay;

String days[ ] = {" ","Sunday","Monday","Tuesday", "Wednesday",
"Thursday","Friday", "Saturday"};
String months[ ] = {" ","Jan","Feb", "Mar","Apzr","May","Jun","Jul",
"Aug","Sep","0ct", "Nov", "Dec"};
strDateTime dateTime;
float temperature, pressure, altitude, BasePressure;
byte hh, mm, ss, month, day, dayofweek;

int yr;

void setup()
{

Serial.begin(115200); // define Serial output at 115200 baud
WiFi.begin(ssid, password); //initialise Wi-Fi and wait for
while (WiFi.status() != WL_CONNECTED) delay(500); //wait for Wi-Fi

// connection

516



CHAPTER 25  WI-FI COMMUNICATION

Serial.print("IP address: ");

Serial.println(WiFi.localIP()); // display IP address of Wi-Fi network
pinMode(LEDpin, OUTPUT); // LED pin as output
server.on("/", webpage); //runwebpage function as webpage loaded

server.begin(); // initialise server
bmp.begin(BMPaddress); //initialise BMP280 sensor
}
void webpage() // function to collect data for webpage
{
button(); // obtain LED button status

temperature = bmp.readTemperature(); //BMP280 measurements
pressure = bmp.readPressure()/100.0; //temperature and pressure
BasePressure = pressure + 10.0; //assumed sea level pressure
altitude = bmp.readAltitude(BasePressure); //predicted altitude

getTime(); // obtain date and time
server.send (200, "text/html", buildPage()); //publish webpage
delay(1000); // delay 1000ms

}

void getTime() // function to get NTP time

{

dateTime = NTP.getNTPtime(0, 1); // get date and time

if(dateTime.valid)
{
hh = dateTime.hour; // extract hour (0 to 24)
mm = dateTime.minute; // extract minutes
ss = dateTime.second; // extract seconds
yr = dateTime.year; // extract year
month = dateTime.month; // extract month
day = dateTime.day; // extract day (1 to 31)
dayofweek = dateTime.dayofWeek; //extractday of week (1 to 7)
if(ss<10) stringTime = ":0"+String(ss); //leading zero for seconds <10

else stringTime = ":"+String(ss);

517



CHAPTER 25  WI-FI COMMUNICATION

if(mm<10) stringTime = String(hh)+":0"+String(mm) + stringTime;
else stringTime = String(hh)+":"+String(mm) + stringTime;
stringDate = String(day)+" "
"+String(yr);
stringDay = days[dayofweek]; // convert data to strings

}

+String(months[month])+"

}
void button() // function of LED button status
{ // read LED button state

}

if (server.hasArg("LED")) LEDvalue = server.arg("LED");
if (LEDvalue == "ON") digitalWrite(LEDpin, HIGH); //turn LED on or off
else digitalWrite(LEDpin, LOW);

String buildPage() // function to build webpage

{

String page = "<!DOCTYPE html><html><head>"; //head section and
page += "<meta http-equiv="'refresh' content="1'>"; //webpage refreshrate (s)
page += "<title>Arduino Applied</title>";
page += "<style> body {font-family: Arial}"; //define styles
page += ".button {padding: 15px 15px; font-size: 20px}
</style></head>";
page += "<body><h1> Arduino Applied </h1>"; //body section
page += "<span style='font-size: 20px'>Time of day</span>";
// date and time
page += "<ul><li>Time: <span style='font-size:30px"'>"
+stringTime+"</span></1i>";
page += "<li>Date: "+stringDate+"</1i>";
page += "<li>Day of week: "+stringDay+"</li></ul>";
page += "<p><span style="font-size:  20px'>Sensor</span></p>";
//sensor readings

page += "<ul><li>Temperature: ";

518



CHAPTER 25  WI-FI COMMUNICATION

page += "<span style='font-size:30px'>"+String(temperature)
+"8&deg; C</span></1i>";
page += "<li>Pressure: "+String(pressure)+" hPa</li>";
page += "<li>Altitude: "+String(altitude)+" m</li></ul>";
page += "<span style='font-size: 20px'>LED</span>";
page += "<form action='/' method='post'>"; //LED buttons
page += "<input type='submit' class='button' name='LED' value="ON'>";
page += "<span class="checkmark'></span>&emsp;";
page += "<input type='submit' class='button' name='LED' value='OFF'>";
page += "<span class="checkmark'></span></form>";
page += "</body></html>";
return page; // return HTML code

}

void loop()
{

server.handleClient();

}

Wi-Fi and Internet Access

Communication between devices on different Wi-Fi networks requires a
different solution than communication between devices within a Wi-Fi
network. The MQTT (Message Queuing Telemetry Transport) protocol
enables communication between devices and an MQTT broker to allow
information to be passed between one device and the MQTT broker and
between the MQTT broker and a second device, with the two devices on
different Wi-Fi networks. The MQTT broker enables information to be
passed between devices without breaching firewall safeguards. When a
device on a Wi-Fi network requests information from the Internet, the
information is allowed through the network’s firewall as the request

519



CHAPTER 25  WI-FI COMMUNICATION

came from the Wi-Fi network. Provision of information to the MQTT
broker is termed publish and subscribe is the term to access information
from the MQTT broker. Adafruit.io and Cayenne are two MQTT brokers
and the Cayenne MQTT broker is used in the chapter.

Cayenne (see mydevices.com/cayenne/features) provides a
dashboard to display information from devices connected to a NodeMCU
ESP8266 (see Figure 25-4). The Cayenne dashboard is visible locally or
remotely on cayenne.mydevices.com/cayenne/dashboard/start or with
the Cayenne app, available from Google Play. Information from devices can
be displayed numerically, as a dial and graphically, with binary variables
displayed as ON/OFF. A device can be switched on or off from the Cayenne
dashboard, providing both local and remote access to a device.

An IFTTT (If This, Then That) function enables triggering of events based
on the output from devices connected to a NodeMCU ESP8266 and visible
on the Cayenne dashboard. For example, if the incident light increases
above a threshold on a light dependent resistor, connected to a NodeMCU
ESP8266, due to a door opening or time of day, then an IFTTT instruction
is sent to the MQTT broker to forward an email or text message to an email
address or mobile phone number stored on the Cayenne dashboard.

e ]
Espazis canmt amme O Tespeni
. st e~ Tpisamt | o
D et 826 4221 21016 - 8255 & 2209
LED rl
e \
— e o "™ "I e o
g ; -
) 711 P 101506 711.00 2

Figure 25-4. Cayenne dashboard and app

All MQTT brokers require a username and password. For Cayenne,
information is available at mydevices.com/cayenne. Accessing Cayenne
with the NodeMCU ESP8266 requires the Cayenne-MQTT-ESP library, with
a .zip file containing the library available at github.com/myDevicesIoT/

520


http://mydevices.com/cayenne/features
http://mydevices.com/cayenne/dashboard/start
http://mydevices.com/cayenne
http://github.com/myDevicesIoT/Cayenne-MQTT-ESP

CHAPTER 25  WI-FI COMMUNICATION

Cayenne-MQOTT-ESP. The Cayenne-MQTT-ESP library is installed using
library installation method 1 or 2, as described in Chapter 3.

Communication between the NodeMCU ESP8266 and Cayenne
MQTT is through virtual channels, which can be arbitrarily numbered
V0, V1, V2, and so forth. The instruction to send data to the Cayenne
dashboard is Cayenne.virtualWrite(virtual channel, variable,
type code, unit code), where the type and unit codes define attributes
of the variable. Several variables are given in Table 25-2, with the
corresponding type and unit codes. For example, if the variable light is
a measure of luminosity in lux, then the instruction to send, on virtual
channel V3, the value of light to the Cayenne dashboard is Cayenne.
virtualhWrite(Vv3, light, "lum", "lux").

Including fype and unit code in the Cayenne.virtualWrite()
instruction automatically configures the Cayenne dashboard with the
variable description and unit of measurement. Note that Cayenne.
virtualWrite() instructions are limited to 60 per minute, so Listings 25-7
and 25-8 have a two-second interval between the MQTT messages.

Table 25-2. Variable Type Names and Codes

Description Type Name Type Code

Barometric pressure  TYPE_BAROMETRIC_PRESSURE  “bp”

Luminosity TYPE_LUMINOSITY “lum”
Relative humidity TYPE_RELATIVE_HUMIDITY “rel_hum”
Temperature TYPE_TEMPERATURE “temp”
Description Unit Name Unit Code
Hectopascal UNIT_HECTOPASCAL “hpa”

Lux UNIT_LUX “lux”
Fahrenheit UNIT_FAHRENHEIT “f”
Celsius UNIT_CELSIUS “c”

521


http://github.com/myDevicesIoT/Cayenne-MQTT-ESP

CHAPTER 25  WI-FI COMMUNICATION

The instructions to read an integer variable on virtual channel 3 in the
Cayenne dashboard is

CAYENNE_IN(3) // define virtual channel number 3
{

int variable = getValue.asInt(); //read value of integer variable

}

getValue.asDouble() and getValue.asString() read a real number
and a string, respectively, with the channel number not including a "V", as
included in the Cayenne.virtualWrite() instruction.

Information on declaring devices or variables, such as LED status or
an LDR reading, on the Cayenne dashboard is available at mydevices.
com/cayenne/docs/features/#features-dashboard. Cayenne dashboard
devices are defined by following these steps.

1. Select Add new at the top left-hand side of the
dashboard.

2. Select Device/Widget » Custom Widgets » Button.
3. Enter the chosen device name.
4. Select Data » Digital Actuator » Unit » Digital (0/1).

5. Select the virtual channel number to correspond
with the sketch.

6. Choose anicon and select Add Widget.
To define a Cayenne dashboard variable, follow these steps.

1. Select Add new » Device/Widget » Custom Widgets
» Value.

2. Enter the chosen device name.

3. Enter Analog Sensor.

522


http://mydevices.com/cayenne/docs/features/#features-dashboard
http://mydevices.com/cayenne/docs/features/#features-dashboard

CHAPTER 25  WI-FI COMMUNICATION

4. Select the virtual channel number.
5. Choose anicon and select Add Widget.

Figure 25-5 shows examples of a defined variable, light, and a device,
LED, for the Cayenne dashboard.

General General
light LED
1 0
Value @ Button
Luminosity Icon
Lux LED
0 Digital (0/1)

Figure 25-5. Cayenne variables and devices

Listing 25-7 displays on a Cayenne webpage or app (see Figure 25-4)
temperature and pressure measurements from a BMP280 sensor, ambient
light using a light dependent resistor, a time counter and a button to turn on
or off an LED. The sensor readings are displayed on the Cayenne dashboard.

523



CHAPTER 25  WI-FI COMMUNICATION

Listing 25-7. Cayenne, ESP8266 with LED, LDR, and BMP820
Sensor

#include <CayenneMQTTESP8266.h> // Cayenne MQTT library

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi ssid

char wifipass[] = "xxxx"; //change xxxx to your Wi-Fi password
char username[] = "xxxx"; //change xxxx to your Cayenne username
char mqttpass[] = "xxxx"; //change xxxx to your Cayenne password

char clientID[] = "xxxx"; //change xxxx to your Cayenne client identity
#include <Adafruit_Sensor.h> // include Adafruit_Sensor library
#include <Adafruit_BMP280.h> // include Adafruit._ BMP280 library
Adafruit BMP280 bmp;  //associate bmp with Adafruit BMP280 library

int LEDpin = D8; // LED pin
int LDRpin = Ao; // light dependent resistor pin
int flashPin = 2; // flashing LED pin GPIO 2

unsigned long count = 0;

int interval = 2000; //2sinterval between MQTT messages
unsigned long lastTime = 0;

float temp, pressure, BasePressure, altitude;

int light;

void setup()

{
bmp.begin(0x76); // initiate bmp with 12C address

// initiate Cayenne MQTT

Cayenne.begin(username, mqttpass, clientID, ssid, wifipass);
pinMode(LEDpin, OUTPUT); // define LED pins as output
digitalWrite(LEDpin, LOW);
pinMode(flashPin, OUTPUT);

}

void loop()
{

Cayenne.loop(); // Cayenne loop() function

524



CHAPTER 25  WI-FI COMMUNICATION

if(millis()-lastTime > interval)

{

temp = bmp.readTemperature(); // BMP280 temperature and pressure
pressure = bmp.readPressure()/100.0;

BasePressure = pressure + 10.0; // assumed sea level pressure
altitude = bmp.readAltitude(BasePressure); // predicted altitude (m)
light = analogRead(LDRpin); // ambient light intensity

light = constrain(light, 0, 1023); //constrain light reading
count++; // increment counter
if(count>99) count = 0;
digitalWrite(flashPin, LOW); //turn flashing LED on then off
delay(10);
digitalWrite(flashPin, HICH);
// send readings to Cayenne on virtual channels

Cayenne.virtualWrite(vi, temp, "temp", "c"); //define temperature reading

// channel2 is flashPin so V2 is not used to avoid confusion
Cayenne.virtualWrite(V3, pressure, "bp", "pa"); // define pressure reading
Cayenne.virtualWrite(V4, altitude);
Cayenne.virtualhWrite(Vs, light, "lum", "lux"); //define luminosity reading
Cayenne.virtualWrite(V6, count);

lastTime=millis(); // update time

}
}
CAYENNE_IN(0) // Cayenne virtual channel 0
{

digitalWrite(LEDpin, getValue.asInt()); //turnLED on or off
}

Listing 25-8 uses the Cayenne MQTT functionality to mimic an
alarm system, which is triggered by the light intensity reading on a
light dependent resistor, such as when a door is opened. If the light
intensity increases above a threshold of 300 and the alarm setting on
Cayenne MQTT is set to ON as indicated by the blue LED, then the

525



CHAPTER 25  WI-FI COMMUNICATION

red LED is turned on with an email and/or text notification that the
event has occurred. If the alarm setting is off, then there is no response
to changes in light intensity. The NodeMCU ESP8266 on-board LED
is flashed every two seconds to indicate that the microcontroller is
powered on.

If the alarm setting is on, then the light intensity reading is sent
to Cayenne on virtual channel 1, but with a value of zero if the alarm
is turned off. Virtual channels 0 and 3 of the Cayenne dashboard
contain the LED and alarm states, which are used to turn on or off the
corresponding LEDs or to indicate the alarm state (blue LED) and when
the alarm has been triggered (red LED). The alarm, LED and email/
text notification triggers are defined in the Cayenne dashboard’s IFTTT
function.

Figure 25-6 shows the Cayenne dashboard with the alarm set to ON
and a light intensity reading of 166, which is not high enough to trigger the
LED to be turned on.

Cayenne

+ Create new proj...

light alarm LED

. ESP8266

® alarm

166 ®

light

Figure 25-6. Alarm, LED, and light intensity

526



CHAPTER 25  WI-FI COMMUNICATION

Listing 25-8. Alarm, LED, and Light Intensity

#include <CayenneMQTTESP8266.h> // Cayenne MQTT library

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi ssid

char wifipass[] = "xxxx"; //change xxxx to your Wi-Fi password
char username[] = "xxxx"; //change xxxx to your Cayenne username
char mqttpass[] = "xxxx"; //change xxxx to your Cayenne password
char clientID[] = "xxxx"; //change xxxx to your Cayenne client identity
int LEDpin = 15; // LED pin GPIO 15 or D8

int alarmPin = 13; // alarm pin GPIO 13 or D7

int LDRpin = Ao; // LDR on pin A0

int flashPin = 2; // flashing LED pin GPIO 2

int reading, alarm;

int interval = 2000; // 2s interval between LDR readings

unsigned long LDRtime = 0;

void setup()

{
Serial.begin(9600); // initiate Cayenne MQTT
Cayenne.begin(username, mqttpass, clientID, ssid, wifipass);
pinMode(LEDpin, OUTPUT); // define LED pins as output

pinMode(alarmPin, OUTPUT);
pinMode(flashPin, OUTPUT);

alarm = 0; // set alarm as "OFF"
}
void loop()
{
Cayenne.loop(); // Cayenne loop() function
if(millis()-LDRtime>interval)
{
LDRtime = millis();

reading = analogRead(LDRpin);
// if alarm ON, then send LDR reading to Cayenne on channel V1, otherwise send zero

527



CHAPTER 25  WI-FI COMMUNICATION

if (alarm == 1) Cayenne.virtualWrite(Vi, reading, "lum", "lux");
else Cayenne.virtualWrite(vi, o, "lum", "lux");

delay(20);
}
digitalWrite(flashPin, LOW);  //LED GPIO 2 active LOW
delay(10); // flash to indicate power on
digitalWrite(flashPin, HIGH);
}
CAYENNE_IN(0) // Cayenne virtual channel 0
{

digitalWrite(LEDpin, getValue.asInt()); //getLED status

}
CAYENNE_IN(3) // Cayenne virtual channel 3

{

alarm = getValue.asInt(); // get alarm state
digitalWrite(alarmPin, alarm);

}

The IFTTT (If This, Then That) function to trigger an event on the
Cayenne dashboard is defined on the Cayenne dashboard and not in the
sketch. Information on the IFTTT features of the Cayenne dashboard
is available at mydevices.com/cayenne/docs/features/#features-
triggers.

Four IFTTT triggers are required by the alarm system. When the light
intensity increases above a threshold of 300, with the alarm setting on, the
email and text notification of the event is triggered and a second trigger
turns on the red LED on virtual channel 0, which triggers the alarm on
virtual channel 3 to turn off, which then triggers the blue LED to turn off.

Cayenne IFTTT triggers are accessed by following these steps.

1. Select User Menu » Triggers and Alerts at the top
right-hand side of the Cayenne dashboard.

2. Select New Trigger.

528


http://mydevices.com/cayenne/docs/features/#features-triggers
http://mydevices.com/cayenne/docs/features/#features-triggers

CHAPTER 25  WI-FI COMMUNICATION

3. Dragthe ESP8266 device into the ifbox.

4. Select the trigger, such as light in Figure 25-7.
5. Select the threshold.

6. Select either Sensor above or Sensor below.

7. Dragthe ESP8266 device into the then box.
8. Selectthe action, such as LED in Figure 25-7.
9. Select either On(1) or Off (0).

10. Select Save.

When sending a notification as a text message, include the mobile
phone number plus the +country code in the Add custom recipient box.

LEDon

if (5) EsPs266 then (=) ESP8266
light IE LED
300 Eon(1)
O O off [0)
0o K 1 300 & 1023 18

[ Sensor above

0O sensor below

Figure 25-7. Cayenne IFTTT trigger

529



CHAPTER 25  WI-FI COMMUNICATION

Figures 25-7 and 25-8 illustrate the IFTTT trigger to turn on the LED,
on virtual channel 0, when the light intensity, on virtual channel 1, exceeds
the threshold of 300 and the corresponding triggered email notification,
respectively.

Your mqtt sensors need your attention.

®

Device Notification

Channel 1

has reached the threshold value of

300

This is connected to ESP8266.

Figure 25-8. Cayenne IFTTT notification

Summary

A NodeMCU ESP8266-based microcontroller is connected to a Wi-Fi
network to establish a web server and manage HTTP requests to control
a device and display requested sensor information on a webpage. HTML
code for a webpage was included in a sketch to provide information from
an external network, such as date and time. Access to an MQTT broker
enabled sensor data to be uploaded to a webpage, with a sensor value
above a threshold triggering an email or text message notification of

the event.

530



CHAPTER 25

Components List

NodeMCU ESP8266

LED: 2x

Resistor: 2x 220€2 and 4.7k

Light dependent resistor (or photoresistor)

Temperature sensor: BMP280

WI-FI COMMUNICATION

531



APPENDIX

Resistor Banding

Resistors are color coded for identification of their value, with the color
bands read from left to right (see Figure A-1). With four bands, there can
be a larger space between bands three and four. Gold and silver bands are
always on the right-hand end of the resistor. Checking the resistance with a
multimeter is recommended. The order of colors, from red to violet, is the
same as in a rainbow. The diagram and a color band calculator is available
www.digikey.co.uk.

4-Band-Code

2%, 5%, 10% 560k Q +5%

[ 1 o T 1 o
0.1%, 0.25%, 0.5%, 1% 237Q +1%
5-Band-Code

Figure A-1. Resistor colour banding

© Neil Cameron 2019 533
N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5


https://doi.org/10.1007/978-1-4842-3960-5
http://www.digikey.co.uk

APPENDIX  RESISTOR BANDING

The sequence of six resistor values between 100, 150, 220, 330, 470
and 68012 is the E6 series, with resistor values having 20% tolerance.
For example, the 220Q resistor has an upper tolerance level of 264Q,
which equals the lower tolerance level of the next resistor in the series,
the 330Q resistor. The preferred resistor values between 10Q2 and 100,
1009, and 1kQ, and so forth, are calculated as L x 10"¢, where L is the
lower value of the range and N is the Nth resistor in the E6 series. If the
resistor values are plotted on the logarithmic (base 10) scale, then the
slope of the line is 1/6.

A similar procedure, L x 10¥12, is used to calculate thel2 preferred
values of the E12 series, which has 10% tolerance. The E12 series between
10022 and 1kQ includes the E6 series plus the additional six values of 120,
180, 270, 390, 560, and 820L2.

Resistors have different power ratings, with the %4W and “2W resistors
measuring 6.3mm and 9.2mm in length.

Libraries

The majority of the required libraries can be uploaded within the
Arduino IDE, with the other libraries available through GitHub (www.
github.com) or specific websites. Several libraries are already built-in to
the Arduino IDE.

534


http://www.github.com
http://www.github.com

APPENDIX  RESISTOR BANDING

Table A-1. Libraries with Information on the Author and Library

Source

Library Author and source if not available through the
Arduino IDE

AccelStepper Mike McCauley

Adafruit BP280 Adafruit

Adafruit GFX Adafruit

Adafruit SSD1306 Adafruit

Adafruit ST7735 Adafruit

Adafruit Unified Sensor ~ Adafruit

AltSoftSerial Paul Stoffregen

Cayenne_MQTT_ESP myDevices

DHTIib (dht) Rob Tillaart
github.com/RobTillaart/Arduino

DS3231 Henning Karlsen

12Cdev Jeff Rowberg
github.com/jrowberg/i2cdevlib

IRremote Ken Shirriff

LiquidCrystal Adafruit, built-in

LiquidCrystal_I2C Frank de Brabander

LiveOV7670 Indrek Luuk
github.com/indrekluuk/LiveQV7670

Low-Power Rocket Scream Electronics

MD_KeySwitch

majicDesigns

(continued)

535



APPENDIX  RESISTOR BANDING

Table A-1. (continued)

Library Author and source if not available through the
Arduino IDE

MD_MAX72XX majicDesigns

MD_Parola majicDesigns

MFRC522 Miguel Balboa

MPU6050 Jeff Rowberg
github.com/jrowberg/i2cdevlib

NeoGPS SlashDevin

NewPing Tim Eckel

NTPtimeESP Andreas Spiess
github.com/Sensorslot/NTPtimeESP

PID Brett Beauregard

PinChangelnterrupt NicoHood

PWM Sam Knight
code.google.com/archive/p/arduino-pwm-frequency-
library/downloads

RF24 J Coliz

SD SparkFun Electronics, built-in

Servo Michael Margolis, built-in

SPI Built-in

Stepper Tom Igoe, built-in

TimerOne Paul Stoffregen

toneAC Tim Eckel
playground.arduino.cc/Code/ToneAC

Wire Built-in

536



APPENDIX  RESISTOR BANDING

Quaternion Measurements

Rotation in three dimensions can be described by rotation about the Z, Y,
and X axes, corresponding to the yaw, pitch, and roll angles. An example of
rotation about the three axes is an aircraft turning on the runway (yaw or
heading), taking off (pitch or attitude), and turning in flight (roll or bank).
Rotation about the axes can be written as R(yaw).

cos(yaw) —sin(yaw) 0
=| sin(yaw) cos(yaw) 0|
0 0 1

cos(pitch) 0 sin(pitch)
R(pitch) = 0 1 0 and
—sin(pitch) 0 cos(pitch)

1 0 0
R(roll) =| o cos(roll) —sin(roll) |-
0 sin(roll) cos(roll)

If the order of the rotation sequence is about the Z axis, then about the
Y axis and finally about the X axis, then the rotation matrix Ryyz = R(yaw)
R(pitch) R(roll) includes the following terms.

cos(yaw )cos(pitch)
Ry =| sin(yaw )cos(pitch) .
—sin(pitch) sin(roll)cos(pitch) cos(roll)cos(pitch)

537



APPENDIX  RESISTOR BANDING

If the rotation sequence is about the Z axis, then about the X axis and
finally about the Y axis, then the rotation matrix RYRP = R(yaw), R(roll),
R(pitch) includes the following terms.

—sin(yaw)cos(roll)
Ry = cos(yaw )cos(roll)
—sin(pitch)cos(roll) sin(roll) cos(pitch)cos(roll)

The difference between the R,y and Ryzp matrices indicates the
importance of defining the rotation sequence.

The rotation can also be parameterized by a quaternion, where w, x, y,
and z are the quaternion magnitude, and three-directional components,
such that the new position of a point, p, with coordinates (X, Y, Z) following
the rotation is Rp.

The rotation matrix, R, is expressed in terms of the quaternion
components as

1-2(y'+2) 20y-we)  2(wy+xe) | g g, R,
R=| 2(wz+xy) 1—2(x2+zz) 2(yz—wx) |=|R, R, R,
R, R, R

32 33

2(xz—wy)  2(wx+yz) 1—2(x2+y2)

The angle and axis of rotation is @ = 2 arccos (w) and | y |a / sin(%j .
z

538



APPENDIX  RESISTOR BANDING

Interpretation of rotation matrix R depends on the rotation sequence.

If R is equated to Rypg O Rygp, then given the quaternion, the rotation

angles or Euler angles are as follows.

roll

YPR | pitch |=

yaw

roll

YRP | pitch |=

yaw

1- 2(x +y2)

—arcsm( (xz-wy))

arctan (wz+xy)
1-2(y* +2°)

arcsin(2(wx +yz))
arctan M
1- Z(x2 + yz)

—-2(xy-wz)

1—2(x2+z2)

arctan[

)

|
|

|

arctan(R,, / R,;)
—arcsin(Ry,)
arctan(R,, / R,,)

arcsin(R,, )
arctan(—Ry, / Ry;)
arctan(-R,, / R,,)

To complete the loop of quaternion to rotation matrix to Euler angles

to quaternion, then given the Euler angles, the quaternion is

N < = 8

)
)
)
)

cos(roll / 2)cos(pitch / 2)cos(yaw / 2)+ sin(roll / 2) sin(pitch / 2
sin(roll / 2)cos(pitch / 2)cos(yaw /2
cos(roll / 2)sin(pitch / 2)cos(yaw / 2
cos(roll / 2)cos(pitch / 2)sin(yaw / 2

—CoS

roll / 2)sin(pitch / 2
+sin(roll / 2)cos(pitch / 2
—sin(roll / 2)sin(pitch / 2

sin(yaw /2)

sin(yaw/2)

S — —

(
sin(yaw /2)

(

(

cos(yaw/2)

539



APPENDIX  RESISTOR BANDING

Quaternion components produced by the MPU-6050 DMP are
multiplied by 2'4, while accelerometer measurements are multiplied by 23
The square root of the sum of squares of the quaternion components,
each divided by 2, is essentially unity, but not for the accelerometer
measurements.

Defining |A|=+/a} +a; +a, , where ay, ay, and a, are the accelerometer
measurements, each divided by 2’3, and Ay = a,/|A| and similarly for ay
and ay, then roll and pitch angles are estimated only from accelerometer
measurements as

VPR [roll ] [arctan(A, /A,)] arctan(Ay / A;)
\pitch| | -arcsin(Ay) | arctan(—AX/ 1—A§)

VRP I r.oll ] _ [ arcsin(A,) } _ arctan(Ay/ 1—A§)
| pitch | | arctan(-Ay / A, ) arctan(-Ay / A,)

Note that the yaw angle cannot be estimated with only the
accelerometer measurements.
To express an angle in degrees, rather than radians, multiply the angle
by 180/x.
As an example, with the GY-521 module tilted up along the Y axis,
for a positive pitch, the quaternion measurements of 8312, 7278, 5139,
and -10953 were divided by 2!, with the resulting R matrix equal to
-0.091 0.957 -0.762
—0.400 -0.288 —0.870 |. The estimated roll, pitch and yaw angles are
-0.912 0.031 0.409
4.39°, 65.81°, and -102.77°, with the YPR representation. Note that with
the YRP representation, the estimated roll, pitch, and yaw angles are 1.80°,
65.87°, and -106.78°, respectively, emphasizing the importance of defining
the rotation order.

540



APPENDIX  RESISTOR BANDING

The corresponding accelerometer measurements were -7281, 316,
and 3074. After dividing the accelerometer measurements by 2'* and
scaling, the estimated roll and pitch angles were 5.87° and 67.00°, which
were of the same order of magnitude as the angles from the quaternion
components.

Who’s Who in Electronics

The names of variables used in electronics are listed in Table A-2 with
details of those accredited with the discoveries. The corresponding dates
indicate that the late 1700s and early 1800s must have been fascinating
times in science. The list only includes variables outlined in the text, as
otherwise the list would be substantially longer to include scientists such
as James Clark Maxwell.

Table A-2. Variables Used in Electronics, with Information on the

Founders
Variable Name and Birth-Death Country Symbol
Baud rate Jean-Maurice-Emile Baudot France Bd baud
(1845-1903)
Bluetooth King Harald Bluetooth Scandinavia *: * + B
(10th century),
symbol combines the runic
characters H and B
Boolean George Boole (1815-1864) England
Capacitance Michael Faraday (1791-1867)  England F farad
Charge Charles—Augustin de France C coulomb

Coulomb (1736-1806)

(continued)

541



APPENDIX

RESISTOR BANDING

Table A-2. (continued)

Variable Name and Birth-Death Country Symbol

Current André—Marie Ampére France Aamp
(1775-1836)

Energy James Prescott Joule England Jjoule
(1818-1889)

Frequency Heinrich Hertz (1857—-1894) Germany Hz hertz

Gray code Frank Gray (1887—-1969) USA

Hall effect Edwin Hall (1855-1938) USA

Power James Watt (1736-1819) Scotland W watt

Resistance Georg Ohm (1789-1854) Germany Q ohm

Voltage Alessandro Volta (1745-1827)  Italy V volt

Sources of Electronic Components

Components can be bought online from a variety of suppliers, such as

those at the following websites.

542

store.arduino.cc
www.rs-online.com
www.aliexpress.com
cpc.farnell.com
www. banggood.com
www.digikey.com
www.gearbest.com

Www.jameco.com


https://www.﻿store.arduino.cc﻿
http://www.rs-online.com
http://www.aliexpress.com
https://www.﻿cpc.farnell.com﻿
http://www.banggood.com
http://www.digikey.com
http://www.gearbest.com
http://www.jameco.com

APPENDIX  RESISTOR BANDING

The longer delivery time from some sources may be offset by lower

prices.
A starter kit (see Figure A-2) provides sufficient components for several

chapters of the book.

1 IERRERY

-4

222222 |

8

Figure A-2. Example of an Arduino starter kit

543



Index

A

Analog to digital converter (ADC),
1,2,31,32,42,43,161, 172,
198, 326, 397, 398, 406, 427,
500, 502
Angle
pitch, 73, 74, 481, 489, 491, 497
roll, 73, 74
Arduino Nano, 436-438, 444, 445,
448, 452, 465, 467, 468, 470,
481, 482, 484, 492, 497
Arduino starter kit, 543
ATmega328P, 1, 325-328
interrupt pins, 327
pin layout, 326-328
timers, 326-328, 387, 390, 397

B

Blink sketch, 6, 8-11, 15, 331, 502

Bluetooth, 1, 48, 289-310, 499

Bluetooth apps, 292-295, 302-305

Bootloader, 332-336, 436

Breadboard, 3-4, 15, 29, 78, 100,
118, 136, 156, 163, 176, 187,
201, 217, 236, 243, 259, 275,
288, 310, 323, 337, 369, 395,
410, 432, 465, 497

© Neil Cameron 2019

Brown out detector (BOD),
397, 406

Build “Arduino’, 325-337

Bypass capacitor, 220, 222

C

Camera, 277-288
frames per second, 277, 288
image capture, 281-284, 288
Capacitor
bypass, 220, 222
decoupling, 158, 159
electrolytic, 27, 83, 159, 220, 330
RC filter, 254, 290
Channel scanning, 312-314
Circular buffer, 485-489, 496
Colour, 261-275
codes, 9, 255
565 format, 264-266
Hexadecimal codes, 266
recognition sensor, 267-275
RGB format, 261-264
Component
3144, 58,78
Arduino Nano, 436-438, 444,
445, 448, 452, 465, 467, 468,
470, 481, 482, 484, 492, 497
ATmegal6U?2, 1, 397

545

N. Cameron, Arduino Applied, https://doi.org/10.1007/978-1-4842-3960-5


https://doi.org/10.1007/978-1-4842-3960-5

INDEX

Component (cont.)

BMP280, 88-91, 100, 507, 508,
514, 515, 523, 531

28BY]J-48, 165, 175, 176, 187

DHT11, 37-42, 78, 228, 230, 236

DS3231, 226, 227, 230, 236

FC-03, 457, 458, 465

FT232R FTDI, 328, 337, 370, 410

GY-521, 77, 78, 452-455, 465,
481, 489, 497, 540

HC-05, 289, 290, 292-295,
302-305, 307, 310

74HC595, 107-109, 112, 115,
118, 127, 128, 132-134, 136,
146-148, 156, 300

HC-020K, 457, 465

HC-SR04, 50, 52, 54, 78,
243-247, 259, 468, 470, 497

HR-SC501, 69, 410

ILI9341, 252-258, 266

KY-023, 445

LD33V, 362, 363, 370

LM393, 61, 78, 457

LM35DZ, 31-33, 52, 78, 80, 82,
100, 128, 136, 220, 222,
223, 236

L298N, 433-438, 441, 445, 448,
452, 465, 467, 469, 470, 481,
482, 491, 497

L4940V5, 158-160, 176, 243, 245,
259, 301, 310, 323, 362, 363,
370, 432

MAX7219, 300-310

MFRC522, 203-205, 208,
212-214, 217

546

16MHz clock crystal, 328, 329,
362, 399, 408

MPU-6050, 72, 73, 452, 481,
489-492

NodeMCU ESP8266, 499-502,
507, 515, 520, 526, 530, 531

nRF241.01, 311, 312, 314-319,
321-323, 445-450, 452-456,
465, 481-486, 490, 491, 497

0V7670, 277,279, 281, 284-288

SG90, 157, 176, 259, 323, 432,
467, 468, 470, 497

SSD1306 chip, 249

ST7735,237-239, 242-246,
259, 264, 268, 270, 274,
275,277-281, 284, 288,
360-369

TCRT500, 67, 78, 197

TCS230, 267, 270, 275

ublox NEO-7M, 339, 342, 344,
347,351

VS1838B, 64, 190, 195, 196, 201,
444, 465

WeMos D1 mini, 499, 502-503

csvfile, 219, 225, 228, 361

D

Data logging, 219, 232-234, 236,
357-360

Data structure, 314, 315, 317,
319, 321

DC motor, 433-465, 467, 470, 475,
481, 492, 497

Decoupling capacitor, 158, 159



4-digit 7-segment display, 119-135,
142,147, 415
8x8 dot matrix, 137-156
character set, 153
column scanning, 150, 151
row scanning, 139, 150
scroll text, 150-156
Duty cycle, 12, 378, 388, 390, 415,
425-427,431

E

Electricity basics, 7-8
Encoder
photoelectric, 441, 457-464
rotary, 177-186, 372,
380-383, 395
External power, 158, 159, 167,
243, 301, 507

F

Filename
FAT32, 219, 242
increment, 222, 232-234,
357,361
Forward voltage drop, 9, 105

G

Global navigation satellite system,
339-369

GLONASS, 339, 341, 342, 347

GPIO line, 326

INDEX

GPS, 238, 339, 341, 343, 347
route display, 1, 368

H

Hexadecimal, 87,97, 107, 110, 113,
118, 190, 193, 195, 196, 250,
266, 444

12C, 2, 72-74, 87-93, 100, 193,
195, 201, 204, 205, 217,
226, 250, 259, 279, 325,
327,397, 398, 456, 467,
500, 502, 507
If This, Then That (IFTTT), 520, 526,
528-530
Impedance, 222
Infrared
distance module, 67-68
emitter, 67, 195-200
passive sensor, 69-72, 77, 78,
406, 410
receiver, 67, 195-200
sensor, 64-66, 69-72, 77,
78, 189-200, 406-410,
444, 465
Internet access, 519-530
Interrupt, 371-395
additional pins, 327, 379
Interrupt service routine (ISR), 326,
371, 372, 375, 376, 378, 380,
407, 459, 461

547



INDEX

J, K

Joystick, 445, 446, 449, 450, 452, 465

L

Library installation, 39-42, 514, 521
Liquid crystal display, 79-100
character set, 96-99
colours, 255
cursor positioning, 93-95
display images, 237, 277
12C bus, 87-93, 100, 193
PWM, 83-85
“radar’, 243
scroll text, 85-87
Serial data entry, 95, 96
TFT, 237-243, 246, 247, 252-258,
264, 268, 270, 274, 275,
277-281, 284, 288, 360, 361,
363, 369
TFT touch, 252-258
Logic level converter, 48, 89, 252,
254, 289-291, 344-346, 507

Message Queuing Telemetry
Transport (MQTT),
519-521, 525

Motor

accelerometer control, 452-456

DC, 433-464

driver board, 168, 433, 434, 437,
438, 441, 445, 448, 452,
467-470, 481, 492

548

H bridge, 175, 433, 434

infrared control, 444, 445

photoelectric encoder control,
457-464

servo, 157-175, 208, 243-249,
275,321, 322,431, 432, 437,
467-470

speed (rpm), 441-444

stepper, 157-175, 179, 182-186

wireless control, 445-451

MQTT broker, 519, 520

N

Network Time Protocol (NTP),
514,515

NMEA message, 341-343, 346, 347,
351, 353, 361

NodeMCU ESP8266, 499-502, 507,
515, 520, 521, 526

O

Ohm’s Law, 8, 9, 49
OLED display, 249-252, 455-456,
467-470, 484, 486

P

PID
coefficients, 476, 478-481,
483-485, 490, 491
control, 475-481
windup, 479



Piezo buzzer, 416
Piezo transducer, 412, 413, 415,
416, 420, 423
Pin output current, 1, 159
Potentiometer, 48, 61, 67, 69, 79,
87,161-164, 172-175,
306-307, 321, 322, 426-431,
441, 442, 449, 478, 479,
485-486, 490
Power saving, 326, 397-410
current requirements, 398-400
options, 401-402
sleep modes, 402-404
Pull-down resistor, 17-19, 25, 37,
197, 284, 400, 402
Pull-up resistor, 18, 37, 58, 59,
179, 279, 328, 383, 401,
402, 420
Pulse width modulation (PWM),
12-14, 46, 83-85, 105-107,
113-116, 179, 183, 195, 262,
292, 295, 296, 326, 328, 415,
416, 423, 425-432, 434, 437,
441, 445, 448, 449, 459, 460,
467, 492, 500, 502

Q

Quaternion, 489-496, 537-541

R

Radio frequency identification
(RFID), 203-217
Radio transceiver, 311, 312, 314

INDEX

Reactance, 222
Real-time clock (RTC), 226-230
Resistor-capacitor filter, 254, 290
Resistor colour banding, 533, 534
Robot
balancing, 475, 481-483,
489-492
car, 438, 461, 462, 467-497
obstacle avoiding, 467, 470
Rotary encoder, 177-187, 372,
380-383

S

Scroll text
8x8 dot matrix, 150-156
liquid crystal display, 85-87
MAX7219 dot matrix, 300-301
message speed, 306-307
SD card, 219-236
increment filename, 232-234
list files, 234-235
7-segment LED display, 101-118
character set, 110, 116-118, 138
PWM, 105-107,113-116
Sensor
accelerometer, 72-77
colour recognition, 267-275
gyroscope, 72-77
Hall effect, 57-61
humidity, 37-38
infrared, 64-66
infrared distance, 67-68
infrared emitter, 67, 195-200

549



INDEX

Sensor (cont.)
light dependent resistor, 42-48
passive infrared, 69-72
sound, 61-64, 69
temperature, 31-35, 37, 51, 52,
56, 77, 80-82, 126, 128, 193,
222,226,321
temperature and pressure,
88-93, 523
ultrasonic distance, 50-55
Serial Monitor, 31, 41, 53, 54, 59, 61,
90, 95, 96, 125, 151, 152,
173, 208, 213, 214, 225, 237,
268, 273, 279, 292, 312, 315,
317,334, 335, 339-342, 352,
372,375,377,378, 388, 416,
504,511
Serial Peripheral Interface (SPI), 2,
88, 204-205, 219, 237, 300,
311, 319, 325, 327, 328, 332,
397, 437, 500, 502
Serial plotter, 31, 33
Servo motor, 157-176, 208,
243-249, 275, 321, 322,
431-432,467-470
Shift register, 107-116, 120,
126-135, 142-150, 300
Sketch
++, 22
-, 22
==, 22
analogRead() function, 45, 162
analogReference() function,
32,222

550

analogWrite() disable, 328,
437, 460
AND, 21
array, 48
attachInterrupt() function, 372,
376, 379
bitRead() function, 139, 152
<< bit shifting, 149,
392-393, 429
constrain() function, 307, 420
delay() function, 172, 262, 326,
371,372,384
for, 48
functions, 123-125
getValue.asDouble()
function, 522
getValue.asInt() function, 522,
525,528
getValue.asString()
function, 522
if...else, 27, 86, 124, 293
INPUT_PULLUP, 58, 179
LSBFIRST, 111, 112, 149
map() function, 46, 161, 173,
307, 420
millis() function, 384-387
% modulus, 22, 97, 122
MSBFIRST, 111, 149
nolnterrupts()
function, 378
I'not equal to, 22, 212
openReadingPipe()
function, 315
open sketch, 14



openWritingPipe()
function, 315
OR, 21
parseFloat() function, 90
parselnt() function, 90, 213
pow() functuion, 57
print() function, 95, 348
replace() function, 348
save sketch, 14
Serial.available() function, 90,
96, 151, 213
Serial.Read() function, 95, 96, 151
setRotation() function, 240,
243, 255
setTextColor() function, 239, 274
startListening, 315, 317
stopListening, 317
string() function, 193, 362
switch...case, 299
text.length() function, 87
toCharArray() function, 362
toFloat() function, 348
toInt() function, 348
tone() function, 328, 414-416, 437
while, 125
write() function, 94
Software serial, 344, 351
Sound, 411-432
electro-Theremin, 423-425
musical notes, 416-420
Speed of sound, 50, 54, 56-57
Square wave, 411-432
falling edge, 177, 178, 380
rising edge, 177

INDEX

Stepper
coil activation, 165-169, 175
full-step, 166-167, 169-170, 172,
175, 183
half-step, 166, 167, 169, 170, 175
wave driving, 166, 167
Stepper motor, 157-175, 179,
182-186
Switch, 17-29
ball, 27-29
debounce hardware, 25-27
debounce software, 17, 22-25
tilt, 27

T

Thevenin resistance, 50
Timers, 387-389
Fast PWM mode, 429
overflow, 390, 427, 429, 431
prescalar, 390-393, 428-429, 431
register manipulation,
390-394, 427

U

u-blox u-center, 341-343
USART, 325, 397, 398

\'

Variable
Boolean, 35
byte, 35

551



INDEX

Variable (cont.)
constant, 37
integer, 36, 37
real, 36, 37
Virtual channel, 521-523, 526,
528, 530
Voltage divider, 42-44, 48-50, 114,
115, 222, 253, 254, 289-291,
345, 423, 478
Voltage regulator, 158, 159, 219,
243, 289, 301, 363, 397, 433,
499, 502

552

W XY Z
Weather station, 228-232, 357
WeMos D1 mini, 499, 502-503
WiFi, 499-531
HTML, 510-519
If This, Then That (IFTTT), 520,
526, 528-530
internet access, 519-530
MQTT broker, 519-521
URL request, 507, 512
Wireless communication, 311-323,
445-451, 481



	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction
	Arduino Uno
	Breadboards
	Arduino IDE Software
	Arduino IDE Sketch
	Run the Blink Sketch
	Electricity Explained
	Revise the Blink Sketch
	Pulse Width Modulation
	Opening and Saving Sketches
	Summary
	Components List

	Chapter 2: Switches
	Tactile Switch
	Comparison Operators
	Debouncing a Switch
	Hardware Switch Debounce
	Ball Switch
	Summary
	Components List

	Chapter 3: Sensors
	Temperature Sensor
	Variables
	Humidity Sensor
	Library Installation
	Library Installation Method 1
	Library Installation Method 2
	Library Installation Method 3

	Light Dependent Resistor
	Light Dependent Resistor and Several LEDs
	Voltage Divider
	Ultrasonic Distance Sensor
	Speed of Sound
	Hall Effect Sensor
	Sound Sensor
	Infrared Sensor
	Infrared Distance Module
	Passive Infrared Sensor
	Accelerometer and Gyroscope
	Summary
	Components List

	Chapter 4: Liquid Crystal Display
	Contrast Adjustment with PWM
	Scrolling Text
	LCD with I2C Bus
	I2C with Temperature and Pressure Sensor
	16×4 LCD Cursor Positioning
	Display Entered Values on LCD
	LCD Character Set
	Additional Characters
	Summary
	Components List

	Chapter 5: 7-Segment LED Display
	Basic Schematic
	PWM and LED Brightness
	Shift Register
	Shift Register, PWM, and LED Brightness
	Alphanumeric Characters
	Summary
	Components List

	Chapter 6: 4-Digit 7-Segment Display
	Functions
	One Shift Register
	Two Shift Registers
	Summary
	Components List

	Chapter 7: 8×8 Dot Matrix Display
	One Shift Register
	Two Shift Registers
	Scrolling Text
	Summary
	Components List

	Chapter 8: Servo and Stepper Motors
	Servo Motors
	Servo Motor and a Potentiometer
	Stepper Motor
	Stepper Motor and a Potentiometer
	Stepper Motor Gear Ratio
	Summary
	Components List

	Chapter 9: Rotary Encoder
	Rotary Encoder and Stepper Motor
	Summary
	Components List

	Chapter 10: Infrared Sensor
	Infrared Emitter and Sensor
	Infrared Emitter and Receiver
	Summary
	Components List

	Chapter 11: Radio Frequency Identification
	Display Content of MIFARE Classic 1K and 4K
	Mimic RFID and Secure Site
	Master Card Validation
	Read and Write to Classic 1KB Card
	Summary
	Components List

	Chapter 12: SD Card Module
	Temperature and Light Intensity Logging
	Date and Time Logging
	Logging Weather Station Data
	Increment File Name for Data Logging
	Listing Files on an SD Card
	Summary
	Components List

	Chapter 13: Screen Displays
	TFT LCD Screen
	Displaying Images from an SD Card
	Screen, Servo Motor, and Ultrasonic Distance Sensor
	OLED Display
	Touch Screen
	Summary
	Components List

	Chapter 14: Sensing Colors
	Red Green Blue (RGB) LED
	565 Color Format
	Color-Recognition Sensor
	Summary
	Components List

	Chapter 15: Camera
	Camera Image Capture Setup
	Capturing Camera Images
	Summary
	Components List

	Chapter 16: Bluetooth Communication
	Bluetooth Terminal HC-05 App
	ArduDroid App
	Message Scrolling with MAX7219 Dot Matrix Module
	MAX7219 and Bluetooth Terminal HC-05 App
	Message Speed and Potentiometer
	MAX7219 and ArduDroid App
	Summary
	Components List

	Chapter 17: Wireless Communication
	Transmit or Receive
	Transmit and Receive
	Summary
	Components List

	Chapter 18: Build Arduino
	ATmega328P Pin Layout
	Building an Arduino
	Installing the Bootloader
	Summary
	Components List

	Chapter 19: Global Navigation Satellite System
	GNSS Messages on Serial Monitor
	u-blox u-center
	Arduino and GNSS
	GNSS Data Logging to SD Card
	GNSS and ST7735 Screen
	Displaying GNSS Data
	Summary
	Components List

	Chapter 20: Interrupts and Timed Events
	Interrupts
	Types of Interrupt
	Additional Interrupt Pins
	Interrupts and Rotary Encoder
	Timed Events: delay()
	Timed Events: millis()
	Timed Events: Timer1
	Timer Register Manipulation
	Summary
	Components List

	Chapter 21: Power Saving
	avr/sleep Module
	LowPower Library
	Power Down and an Infrared Sensor
	Summary
	Components List

	Chapter 22: Sound and Square Waves
	Piezo Transducer and Buzzer
	Musical Notes
	Sensor and Sound
	Generating Square Waves
	Square Wave and Servo Motor
	Summary
	Components List

	Chapter 23: DC Motors
	Motor Control Set in the Sketch
	Motor Speed
	Motor Control with Infrared Remote Control
	Motor Control with Wireless Communication
	Motor Control with Accelerometer
	Motor Control with Photoelectric Encoder
	Summary
	Components List

	Chapter 24: Robot Car
	PID Controller
	Balancing Robot
	Determining PID Coefficients
	Circular Buffer
	Quaternion Measurements
	Summary
	Components List

	Chapter 25: Wi-Fi Communication
	NodeMCU ESP8266
	WeMos D1 Mini
	Wi-Fi and Web Server
	Wi-Fi and HTML
	Wi-Fi and Internet Access
	Summary
	Components List

	Appendix: Resistor Banding
	Libraries
	Quaternion Measurements
	Who’s Who in Electronics
	Sources of Electronic Components

	Index



